
148 © Copyright by International OCSCO World Press. All rights reserved. 2009

International Scientific Journal

published quarterly by the Association 

of Computational Materials Science  

and Surface Engineering

ARCHIVES of

Computational 
Materials Science 
and Surface Engineering

2009  •  Volume 1  •  Issue 3  •  148-154

Particle swarm intelligence based 
optimisation of high speed end-milling

F. Cus, U. Zuperl*
Faculty of Mechanical Engineering, University of Maribor,  
Smetanova 17, 2000 Maribor, Slovenia
*  Corresponding author: E-mail address: uros.zuperl@uni-mb.si

Received in a revised form 12.06.2008

 
ABSTRACT

Purpose: Selection of machining parameters is an important step in process planning therefore a new evolutionary 
computation technique is developed to optimize machining process.  This study has presented multi-objective 
optimization of milling process by using neural network modelling and Particle swarm optimization. Particle 
Swarm Optimization (PSO) is used to efficiently optimize machining parameters simultaneously in high-speed 
milling processes where multiple conflicting objectives are present. The goal of optimization is to determine the 
objective function maximum (predicted cutting force surface) by consideration of cutting constraints.
Design/methodology/approach: First, an Artificial Neural Network (ANN) predictive model is used to predict 
cutting forces during machining and then PSO algorithm is used to obtain optimum cutting speed and feed rates.
Findings: During optimization the particles ‘fly’ intelligently in the solution space and search for optimal cutting 
conditions according to the strategies of the PSO algorithm. The simulation results show that compared with 
genetic algorithms (GA) and simulated annealing (SA), the proposed algorithm can improve the quality of the 
solution while speeding up the convergence process.
Research limitations/implications: The experimental results show that the MRR is improved by 28%. 
Machining time reductions of up to 20% are observed.
Practical implications: While a lot of evolutionary computation techniques have been developed for 
combinatorial optimization problems, PSO has been basically developed for continuous optimization problem. 
PSO can be an efficient optimization tool for solving nonlinear continuous optimization problems, combinatorial 
optimization problems, and mixed-integer nonlinear optimization problem.
Originality/value: An algorithm for PSO is developed and used to robustly and efficiently find the optimum 
machining conditions in end-milling. This paper opens the door for a new class of EC based optimization 
techniques in the area of machining. This paper also presents fundamentals of PSO optimization techniques.
Keywords: Machining; End-milling; Particle Swarm Optimization
Reference to this paper should be given in the following way:
F. Cus, U. Zuperl, Particle Swarm Intelligence based optimisation of high speed end-milling, Archives of 
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1. Introduction 
 

Increasing productivity, decreasing costs, and maintaining 
high product quality at the same time are the main challenges 

manufacturers face today. The proper selection of machining 
parameters is an important step towards meeting these goals and 
thus gaining a competitive advantage in the market [15]. Many 

1.  Introduction

 

researchers have studied the effects of optimal selection of 
machining parameters of end milling [9]. This problem can be 
formulated and solved as a multiple objective optimization 
problem [6]. In practice, efficient selection of milling parameters 
requires the simultaneous consideration of multiple objectives, 
including maximum tool-life, desired roughness of the machined 
surface, target operation productivity, metal removal rate, etc [2]. 
In some instances, parameter settings that are optimal for one 
defined objective function may not be particularly suited for 
another objective function. Solving multi-objective problems with 
traditional optimization methods is difficult and the only way is to 
reduce the set of objectives into a single objective and handle it 
accordingly. Therefore evolutionary algorithms such as genetic 
algorithms (GA) and particle swarm optimization (PSO) are more 
convenient and usually utilized in multiobjective optimization 
problems. These methods are summarized by [3]. The PSO is an 
efficient alternative over other stochastic and population-based 
search algorithms, especially when dealing with multi-objective 
optimization problems. It is relatively easy to implement and has 
fewer parameters to adjust compared to genetic algorithms.  
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Fig. 1. PSO based neural network optimization scheme 

 
 

In our research neural networks are used to model complex 
relationships in the process, and an integrated system of neural 
networks and particle swarm optimizer is utilized in solving 
multi-objective problems observed in milling operations (Fig. 1). 
 
 

2. Particle swarm optimization 
 

Particle Swarm Optimization (PSO) is a relatively new 
technique, for optimization of continuous non-linear functions 
[11]. It was first presented in 1995 [12]. 

They discovered the method through simulation of a 
simplified model, the graceful but unpredictable movement of a 
bird swarm [11]. Mohan developed a swarm model with simple 
rules and generated complicated swarm behaviour [10]. These 
researches are called "Swarm Intelligence"  

PSO is a very simple concept, and paradigms are 
implemented in a few lines of computer code. It requires only 
primitive mathematical operators, so is computationally 
inexpensive in terms of both memory requirements and speed. 
PSO has been recognized as an evolutionary computation 
technique [12] and has features of both genetic algorithms (GA) 

and evolution strategies (ES). Other evolutionary computation 
(EC) techniques such as genetic algorithm also utilize some 
searching points in the solution space. It is similar to a GA in that 
the system is initialized with a population of random solutions.  

While GA can handle combinatorial optimization problems,  
PSO can handle continuous optimization problems. However, 
unlike a GA each population individual is also assigned a 
randomized velocity, in effect, flying them through the solution 
hyperspace. PSO has been expanded to handle also the 
combinatorial optimization problems. As is obvious, it is possible 
to simultaneously search for an optimum solution in multiple 
dimensions. Unlike other EC techniques, PSO can be realized 
with only small program. Natural creatures sometimes behave as a 
swarm. One of the main goals of artificial life researches is to 
examine how natural creatures behave as a swarm and reconfigure 
the swarm models inside a computer.  

PSO has two simple concepts. Swarm behaviour can be 
modelled with a few simple rules. Even if the behaviour rules of 
each individual (particle) are simple, the behaviour of the swarm 
can be very complex. The behaviour of each agent inside the 
swarm can be modelled with simple vectors. This characteristic is 
the basic concept of PSO. 

According to Mohan examination [10], people utilize two 
important kinds of information in decision process. The first one 
is their own experience; they have tried the choices and know 
which state has been better so far, and they know how good it 
was. Therefore each person decides his decision using his own 
experiences and other peoples' experiences. This characteristic is 
another basic concept of PSO. The applications of PSO are: 
Neural network learning algorithms, Rule extraction in fuzzy 
neural networks, computer controlled milling optimization, power 
and voltage control [1]. Application of PSO to other fields is at 
the early stage. More applications can be expected. Most of 
papers are related to the method itself, and its modification and 
comparison with other EC methods [1, 4, 8, 10]. 
 
 

3. Basic of particle swarm optimization 
 

PSO is developed through simulation of bird flocking in two-
dimension space. The position of each agent is represented by XY 
axis position and also the velocity is expressed by vx (the velocity 
of X axis) and vy (the velocity of Y axis). Modification of the 
agent position is realized by the position and velocity information. 
Bird flocking optimizes a certain objective function. Each agent 
knows its best value so far (pbest) and its XY position. This 
information is analogy of personal experiences of each agent. 
Further, each agent knows the best value so far in the group 
(gbest) among (pbests). This information is analogy of knowledge 
of how the other agents around them have performed. Each agent 
tries to modify its position using the following information: - the 
current positions (x, y), - the current velocities (vx, vy), - the 
distance between the current position and (pbest) - the distance 
between the current position and (gbest). This modification can be 
represented by the concept of velocity. 
Velocity of each agent can be modified by the following equation: 
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where, 
vik : velocity of agent i at iteration k, 
 w : weighting function, 
 cj : weighting factor, 
 rand : random number between 0 and 1, 
 sik : current position of agent i at iteration k, 
 pbesti : pbest of agent i, 
 gbest : gbest of the group. 

The following weighting function is usually utilized (1): 
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where,  
 wmax : initial weight, 
 wmin : final weight,  
 itermax: maximum iteration number,  
 iter : current iteration number. 
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Fig. 2. Concept of modification of a searching point according to 
PSO algorithm 
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Fig. 3. Concept of searching with agents in a solution space 

 
 

Using the above equation, a velocity, which gradually gets 
close to pbest and gbest can be calculated. The current position 
(searching point in the solution space) can be modified by the 
following equation: 
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Figure 2 shows a concept of modification of a searching point 

by PSO algorithm.  
Figure 3 shows a searching concept with agents in a solution 

space. Each agent changes its current position using the 
integration of vectors as shown in Figure 2. 
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Fig. 4. A general PSO algorithm 
 

 
The general flow chart of PSO method can be described as follows: 

 Step 1: Generation of initial condition of each agent Initial 
searching points (si0) and velocities (vi0) of each agent are 
generated randomly within the allowable range. The current 
searching point is set to pbest for each agent. The best-
evaluated value of pbest is set to gbest and the agent number 
with the best value is stored. 

 Step 2: Evaluation of searching point of each agent The 
objective function value is calculated for each agent. If the 
value is better than the current pbest of the agent, the pbest 
value is replaced by the current value. If the best value of 
pbest is better than the current gbest, gbest is replaced by the 
best value and the agent number with the best value is stored.  

 Step 3: Modification of each searching point The current 
searching point of each agent is changed using (1)(2)(3).  

 Step 4: Checking the exit condition The current iteration 
number reaches the predetermined maximum iteration 
number, then exit. Otherwise, go to step 2. 
The features of the PSO procedure can be summarized as follows:  

1. As shown in (1)(2)(3), PSO can essentially handle continuous 
optimization problem.  

2. PSO utilizes several searching points like genetic algorithm 
(GA) and the searching points gradually get close to the 
optimal point using their pbests and the gbest.  

3. The above concept is explained using only XY-axis (two- 
dimension space). However, the method can be easily applied 
to n-dimension problem. 
Figure 4 shows the general flow chart of PSO strategy. 
With the objective to improve the rate of convergence of the 

PSO algorithm, researchers [10] proposed some modifications to 
the existing PSO. These modifications relate to the use of best 
ever position, maximum velocity, inertia, craziness, elite particle 
and elite velocity. 

 

Maximum velocity 
Based on numerical experimentation, we select a starting value 
v0max =100 and then decrease this value by the fraction .. 
Numerical experimentation suggests that this approach improves 
the convergence rate of the algorithm. 
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Best ever position 
It means that the best ever position in the swarm replace the best 
position of the swarm. This procedure increases the pressure 
exerted on the agent to converge towards the global optimum 
without additional function evaluations. Numerical 
experimentation suggests that this approach improves the 
convergence rate of the algorithm. 
 
Craziness 
Craziness operator mimics the random (temporary) departure of 
birds from the flock. Craziness has some similarity to the 
mutation operator in the genetic algorithm, since it increases the 
directional diversity in the flock. “Crazy” birds explore previously 
uncovered ground, which in general increases the probability of 
finding the optimum. 
 
Elite agent 
The concept is borrowed from the GA where the gene with the 
best fitness never vanishes. The elite particle replaces the worst 
positioned particle in the swarm. Numerical results indicate that 
the elite particle improves convergence rates. 
 
 
 

4. Adaptation of PSO technique to 
milling optimization problem 
 

In order to search for optimal process parameters, neural 
network model of cutting force was integrated with particle 
swarm optimizer. The architecture of system is shown in Figure 1.  

Multiple neural network models are grouped together under 
the general neural network model, and its output is fed into the 
multi-objective particle swarm optimizer where the objective 
functions and constraints are defined. PSO algorithm is initiated 
with randomly generated particles that are optimum solution 
candidates. Neural network model predicts cutting forces for each 
of the particles. Predicted forces are used in calculation of 
objective function in which PSO tries to maximize.  

The optimization process executes in two phases. In first phase, 
the neural prediction model on the basis of recommended cutting 
conditions generates 3D surface of cutting forces, which represent the 
feasible solution space for the PSO algorithm. The cutting force 
surface is limited with planes which represent the constraints of 
cutting process. Seven constraints, which arise from technological 
specifications, are considered during the optimization process. Those 
constraints are listed in Table 1. Here we are faced with a non-linear 
objective function along with a set of inequality constraints that may 
also be highly non-linear. The presence of non-linearities creates 
additional problems for finding the minimum. 

The biggest problem in the implementation of PSO technique 
is the construction of a fitness (objective) function which 
adequately epitomizing the nature of the problem. The objective 
function serves as the only link between the optimization problem 
and the PSO-algorithm. For the objective function a surface of 
max. cutting forces is selected, generated by ANN. 

PSO algorithm generates a swarm of particles on the cutting force 
surface during the second phase. Swarm of particles flys over the 
cutting force surface and search for maximal cutting force. The 
coordinates of a particle which has found the maximal (but still 
allowable) cutting force represent the optimal cutting conditions. Figure 
5 shows the PSO flowchart of optimization of milling process. 
The optimization process is depicted by the following steps: 
1. Generation and initialization of an array of 50 particles with random 

positions and velocities. Velocity vector has 2 dimensions, feed rate 
and spindle speed. This constitutes Generation 0. 

2. Evaluation of objective (cutting force surface) function for 
each particle. 

3. The cutting force values are calculated for new positions of 
each particle. If a better position is achieved by particle, the 
pbest value is replaced by the current value. 1. 

4. Determination if the particle has found the maximal force in 
the population. If the new gbest value is better than previous 
gbest value, the gbest value is replaced by the current gbest 
value and stored. The result of optimization is vector gbest 
(feedrate, spindle speed).  

5. Computation of particles’ new velocity. 
6. Update particle’s position by moving towards maximal 

cutting force. 
7. Steps 1 and 2 are repeated until the iteration number reaches a 

predetermined iteration. 
 
 
Table 1.  
Used constraints and their expressions 

Constraints Expression Variables 

Feedrate cmin v
D

z1000f

 

z – number of teeth,   
fz – feeding per tooth,  
D –diameter of cutter 

Spindle speed  cmin v
D

1000n

 
vc –cutting speed 

Radial depth of 
cut 

maxD aeR  aemax –max. radial depth 
of cutting 

Axial depth of 
cut 

maxD apA  apmax –max. axial depth 
of cutting 

Power of cutting dovP
60

KcMRR

 

MRR –metal removal 
rate,          
Kc –specific cutting 
force 

Cutting force refF)n,f(F  Fref –desired cutting 
force 

Surface 
roughness refaa RR  Ra ref  - desired surface 

roughness 
 

Figure 6 shows simplificated principle of optimization of cutting 
conditions by the use of PSO. In this case the swarm flays over the 
force surface and searches for optimal feeding at constant cheap 
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vik : velocity of agent i at iteration k, 
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 cj : weighting factor, 
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 sik : current position of agent i at iteration k, 
 pbesti : pbest of agent i, 
 gbest : gbest of the group. 
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The general flow chart of PSO method can be described as follows: 

 Step 1: Generation of initial condition of each agent Initial 
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number reaches the predetermined maximum iteration 
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The features of the PSO procedure can be summarized as follows:  

1. As shown in (1)(2)(3), PSO can essentially handle continuous 
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2. PSO utilizes several searching points like genetic algorithm 
(GA) and the searching points gradually get close to the 
optimal point using their pbests and the gbest.  

3. The above concept is explained using only XY-axis (two- 
dimension space). However, the method can be easily applied 
to n-dimension problem. 
Figure 4 shows the general flow chart of PSO strategy. 
With the objective to improve the rate of convergence of the 
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the existing PSO. These modifications relate to the use of best 
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Numerical experimentation suggests that this approach improves 
the convergence rate of the algorithm. 
 

10;vv k1k
maxmax  (4) 

 
Best ever position 
It means that the best ever position in the swarm replace the best 
position of the swarm. This procedure increases the pressure 
exerted on the agent to converge towards the global optimum 
without additional function evaluations. Numerical 
experimentation suggests that this approach improves the 
convergence rate of the algorithm. 
 
Craziness 
Craziness operator mimics the random (temporary) departure of 
birds from the flock. Craziness has some similarity to the 
mutation operator in the genetic algorithm, since it increases the 
directional diversity in the flock. “Crazy” birds explore previously 
uncovered ground, which in general increases the probability of 
finding the optimum. 
 
Elite agent 
The concept is borrowed from the GA where the gene with the 
best fitness never vanishes. The elite particle replaces the worst 
positioned particle in the swarm. Numerical results indicate that 
the elite particle improves convergence rates. 
 
 
 

4. Adaptation of PSO technique to 
milling optimization problem 
 

In order to search for optimal process parameters, neural 
network model of cutting force was integrated with particle 
swarm optimizer. The architecture of system is shown in Figure 1.  

Multiple neural network models are grouped together under 
the general neural network model, and its output is fed into the 
multi-objective particle swarm optimizer where the objective 
functions and constraints are defined. PSO algorithm is initiated 
with randomly generated particles that are optimum solution 
candidates. Neural network model predicts cutting forces for each 
of the particles. Predicted forces are used in calculation of 
objective function in which PSO tries to maximize.  

The optimization process executes in two phases. In first phase, 
the neural prediction model on the basis of recommended cutting 
conditions generates 3D surface of cutting forces, which represent the 
feasible solution space for the PSO algorithm. The cutting force 
surface is limited with planes which represent the constraints of 
cutting process. Seven constraints, which arise from technological 
specifications, are considered during the optimization process. Those 
constraints are listed in Table 1. Here we are faced with a non-linear 
objective function along with a set of inequality constraints that may 
also be highly non-linear. The presence of non-linearities creates 
additional problems for finding the minimum. 

The biggest problem in the implementation of PSO technique 
is the construction of a fitness (objective) function which 
adequately epitomizing the nature of the problem. The objective 
function serves as the only link between the optimization problem 
and the PSO-algorithm. For the objective function a surface of 
max. cutting forces is selected, generated by ANN. 

PSO algorithm generates a swarm of particles on the cutting force 
surface during the second phase. Swarm of particles flys over the 
cutting force surface and search for maximal cutting force. The 
coordinates of a particle which has found the maximal (but still 
allowable) cutting force represent the optimal cutting conditions. Figure 
5 shows the PSO flowchart of optimization of milling process. 
The optimization process is depicted by the following steps: 
1. Generation and initialization of an array of 50 particles with random 

positions and velocities. Velocity vector has 2 dimensions, feed rate 
and spindle speed. This constitutes Generation 0. 

2. Evaluation of objective (cutting force surface) function for 
each particle. 

3. The cutting force values are calculated for new positions of 
each particle. If a better position is achieved by particle, the 
pbest value is replaced by the current value. 1. 

4. Determination if the particle has found the maximal force in 
the population. If the new gbest value is better than previous 
gbest value, the gbest value is replaced by the current gbest 
value and stored. The result of optimization is vector gbest 
(feedrate, spindle speed).  

5. Computation of particles’ new velocity. 
6. Update particle’s position by moving towards maximal 

cutting force. 
7. Steps 1 and 2 are repeated until the iteration number reaches a 

predetermined iteration. 
 
 
Table 1.  
Used constraints and their expressions 

Constraints Expression Variables 

Feedrate cmin v
D

z1000f

 

z – number of teeth,   
fz – feeding per tooth,  
D –diameter of cutter 

Spindle speed  cmin v
D

1000n

 
vc –cutting speed 

Radial depth of 
cut 

maxD aeR  aemax –max. radial depth 
of cutting 

Axial depth of 
cut 

maxD apA  apmax –max. axial depth 
of cutting 

Power of cutting dovP
60

KcMRR

 

MRR –metal removal 
rate,          
Kc –specific cutting 
force 

Cutting force refF)n,f(F  Fref –desired cutting 
force 

Surface 
roughness refaa RR  Ra ref  - desired surface 

roughness 
 

Figure 6 shows simplificated principle of optimization of cutting 
conditions by the use of PSO. In this case the swarm flays over the 
force surface and searches for optimal feeding at constant cheap 

4.  Adaptation of PSO technique to milling 
optimization problem
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cross-section A. Optimal feed rate is located at the cross-section of the 
following three planes: cutting force surface, plane with the constant 
cheap cross-section (vertical plane) and the desired cutting force 
plane. The coordinate of the particle which is the nearest to mentioned 
cross-section represent the optimal feed rate. 

 

Yes

Optimal cutting conditions

Population generation

Population evaluation

No

1
501i);speed,feeding(si

)s(F ii

iii pbest)s(Fiiiii spbest&)s(Fpbest

iallfor
pbest)s(F ikk

kgbest

Yes

)sgbest(randc
)spbest(randcvwv

i22

ii11ii

iii vss

2

3

54

6

 
 

Fig. 5. PSO algorithm for optimization of cutting conditions 
 

 
 

Fig. 6. Optimal feeding searching procedure 
 
 
 

5. Computer software for PSO 
optimization 
 

A collection of Matlab’s m- files forms PSO software for 
optimization. This software can be used for optimization of 
arbitrary non-linear system. The required input values can be 

inserted in a software window shown on Figure 7. On the left side 
of the window, the parameters required for executing PSO 
algorithm can be set. The result of optimization (optimal cutting 
parameters) is shown in the middle of the window.  

The process of optimization is monitored on graph. 
 
 
 

6. PSO optimization of cutting 
conditions-Test case 
 

The repeatability and robustness of the PSO algorithm, is 
demonstrated with the following test case. To examine the stability 
and robustness of the proposed optimization strategy, the system is 
first analyzed by simulations, then the system is verified by 
experiments on a CNC milling machine (type HELLER BEA1) for 
Ck 45 and 16MnCrSi5 XM steel workpieces [13,14]. The ball-end 
milling cutter (R220-20B20-040) with two cutting edges, of 20 mm 
diameter and 10° helix angle was selected for experiments. The 
following cutting parameters and constraints are used: milling width 
RD=3 mm, milling depth AD=5 mm, cutting speed vc=80 m/min, n  
2000 min-1, 10  f  900 mm/min, F(f, n)  Fref = 600 N. The 
objective function is determined by neural cutting force model 
(cutting force simulator). The goal of this case is to maximize the 
objective function under given constraints [8,13]. This problem is 
solved using the PSO algorithm. In PSO, 50 particles were used and 
search continues until error gradient is smaller than a specified 
value [5]. Matlab® simulates the trained neural network to predict 
cutting forces at given cutting conditions and these values are used 
to calculate the objective function which PSO algorithm attempts to 
maximize. The results are tabulated in Table 2. Each run 
corresponds to each time the program is run to find the optimum 
machining parameters. Table 2 shows optimal cutting conditions 
along with the number of generations it took to reach that optimum. 
This optimization method has higher convergence, unlike 
traditional methods and it is always successful in finding the global 
optimum. The machining time is reduced by 35% as a result of 
optimizing the feed and speed. A sample of the evolution of the 
particle swarm is presented in Figure 9. 
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Fig. 8. PSO simulation 
 

Figure 8 shows a typical particle swarm movement pattern 
toward the optimum solution. Generation 0 represents the random 
initialization of the particle’s coordinates in the solution space. In 
subsequent generations, the swarm is tracked with “x”. The best 
member in population is presented with “O”. The solution space 

is graphed by the rectangle. An acceptable solution has to be 
found within this two-dimensional space. The third constraint on 
force is also active and as such is not part of these illustrations. By 
simulations the robustness of the algorithm is demonstrated. 
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cross-section A. Optimal feed rate is located at the cross-section of the 
following three planes: cutting force surface, plane with the constant 
cheap cross-section (vertical plane) and the desired cutting force 
plane. The coordinate of the particle which is the nearest to mentioned 
cross-section represent the optimal feed rate. 
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2000 min-1, 10  f  900 mm/min, F(f, n)  Fref = 600 N. The 
objective function is determined by neural cutting force model 
(cutting force simulator). The goal of this case is to maximize the 
objective function under given constraints [8,13]. This problem is 
solved using the PSO algorithm. In PSO, 50 particles were used and 
search continues until error gradient is smaller than a specified 
value [5]. Matlab® simulates the trained neural network to predict 
cutting forces at given cutting conditions and these values are used 
to calculate the objective function which PSO algorithm attempts to 
maximize. The results are tabulated in Table 2. Each run 
corresponds to each time the program is run to find the optimum 
machining parameters. Table 2 shows optimal cutting conditions 
along with the number of generations it took to reach that optimum. 
This optimization method has higher convergence, unlike 
traditional methods and it is always successful in finding the global 
optimum. The machining time is reduced by 35% as a result of 
optimizing the feed and speed. A sample of the evolution of the 
particle swarm is presented in Figure 9. 
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Fig. 8. PSO simulation 
 

Figure 8 shows a typical particle swarm movement pattern 
toward the optimum solution. Generation 0 represents the random 
initialization of the particle’s coordinates in the solution space. In 
subsequent generations, the swarm is tracked with “x”. The best 
member in population is presented with “O”. The solution space 

is graphed by the rectangle. An acceptable solution has to be 
found within this two-dimensional space. The third constraint on 
force is also active and as such is not part of these illustrations. By 
simulations the robustness of the algorithm is demonstrated. 
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Table 2.  
Repeatability of results 

Run n [min-1] f [mm/min] F [N] Nr. of iterations 
1 1998 808.2 598 22 

2 1995 810.1 600 25 
3 1997 811.2 600 28 
4 1997 819.7 598 32 

5 2000 819.1 598 22 

6 1999 819.2 598 31 
7 1999 808 597 26 

8 1998 808.8 598 21 

9 1998 808.9 598 32 

10 2000 808.1 597 30 
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Fig. 9. Decrease of optimization error during swarm evolution 

 
 

7. Conclusion and future research 
 

This study has presented multi-objective optimization of 
milling process by using neural network modelling and Particle 
swarm optimization. A neural network model was used to predict 
cutting forces during machining and PSO algorithm was used to 
obtain optimum cutting speed and feed rate. A set of seven 
constraints were used during optimization. Next, neural force 
model was used to predict the objective function. Next, the PSO 
algorithm is used to optimize both feed and speed for a typical 
case found in industry. The experimental results show that the 
MRR is improved by 28%. Machining time reductions of up to 
20% are observed. This paper opens the door for a new class of 
EC based optimization techniques in the area of machining. This 
paper also presents fundamentals of PSO optimization techniques. 
While a lot of evolutionary computation techniques have been 
developed for combinatorial optimization problems, PSO has 
been basically developed for continuous optimization problem. 
PSO can be an efficient optimization tool for solving nonlinear 
continuous optimization problems, combinatorial optimization 
problems, and mixed-integer nonlinear optimization problem. 
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