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ABSTRACT

Purpose: The purpose of the paper is to investigate the Hegde’s instability mechanics for the prediction of forming 
limit in sheet metal forming.
Design/methodology/approach: Hegde’s Instability Mechanics (HIM) paves way for explaining the effects of 
diffuse instability and localization due to necking in sheet metal forming. For different ranges of stress ratios, the 
ratio of strain differentials has been computed and hence the forming limits are predicted.
Findings: Basing the formulation of HIM on the von Misess yield criterion and applying the interface theory 
(briefed in appendix) the state-of- the-art purpose is deemed to be well served and demonstrated. Interface theory 
to explain in simple terms, gives the optimal decision variables in an ‘n’ dimensional hyper-space. The concept of 
HIM is demonstrated on isotropic and anisotropic materials. The anisotropic materials show better stability than 
isotropic materials in sheet metal forming. However the geometric instability is analyzed with the assumptions that 
the thickness stresses are negligible and biaxial state of stress persists in sheet metal forming.
Practical implications: The observations are based on the theoretical findings for which the experimental 
validation exists in the reviewed references.
Originality/value: To the sincere knowledge of authors, is both different and unique of its kind in sheet forming 
mechanics needing horizontal exploration by potential researchers.
Keywords: Sheet metal instability; Von-Misess yield criteria; Interface theory; Hegde’s Instability Mechanics (HIM)
Reference to this paper should be given in the following way:
G.S. Hegde, J.R. Nataraj, R. Sridhar, Hegde’s instability mechanics for the prediction of forming limit in sheet 
metal forming, Archives of Computational Materials Science and Surface Engineering 1/3 (2009) 155-160.

MANUFACTURING AND PROCESSING OF ENGINEERING MATERIALS

 

 
1. Introduction 

 
Relatively large imperfection is needed for the geometric 

instability in sheet metal forming. This fact has been dealt, by 
Azrin and Backofen [1]. The dynamic discontinuity with 
formation of a vertex [2] in the yield surface in the studies of 

instability had been proposed by Storen and Riee [2]. Three 
important findings [3] had been given in the researches done 
experimentally by the Anand et al. as 1. Shear band localization is 
preceded by plane–strain tension and diffuse necking, 2. For small 
positive rate of strain hardening, shear band localization can be 
expected, 3. Beyond the initiation point of shear band, 
considerable deformation can be sustained before fracture of 
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materials. Shear instability in two modes, 1. Bulk-shear band, 2. 
Surface instability band have been investigated by Hutchinson 
and Tvergaard [4]. The forming limit diagrams of sheet metal and 
the influence of the plastic property of the material were of 
consideration in M-K theory [5]. Ghosh and Hecker [6] reported 
highest sensitivity of material imperfection in plane stretching 
than in out of plane stretching. Limit strain potential obtained by 
Chan et al, [7] had given an initial estimate by critical thickness 
strain criterion. Application of generalized criterion of Hill by 
Lian et al. [8] paved way for predicting sheet metal forming limit. 
Date and Padmanabhan [9] attempted to show that shear band to 
flow localization had been formed, irrespective of the presence or 
absence of imperfection. 

The Swifts’ diffuse instability and Hill’s localized instability 
[10] are taken as the starting point in the contribution of this 
paper. In the absence of thickness stress von Misess yield criteria 
gives the effective stress, in the form of distortion energy equation 
of failure in terms of the two principal stresses. This has been 
solved using interface theory by Hegde et al. to optimize variables 
(differential change in principal stresses) to get the change in stain 
increments [11,12]. Further the load maximization condition in 
two principal directions gives the ratio of change in strain 
increments. 

Levaillant and Chenot [13] predicated the defects in sheet 
metal forming being attributed to material process conditions. The 
domain knowledge base in the form of empirical rules for the 
industrial practice had been provided in by Graf and Hosford [14]. 
This gives substantial aid in design of metal forming tools and to 
plan the processes. The stable optimum solution to forming by 
finite element method (FEM) had been provided by Huh and Kim 
as the complication in formed shape needed analysis on 
computers [15]. 

The Swift’s diffusing instability criteria states that instability 
is initiated when increment in the applied effective stress due to 
geometric softening exceeds the stress which can be produced by 
strain hardening. However it fails to explain the shift from diffuse 
instability to localization (necking) in the rate sensitive metals. 
The criterion due to Hill is applicable when one of the principal 
strains describing the deformation state is negative and other is 
positive. Both the diffuse and localization have the due 
explanation in effort of Hegde’s Instability Mechanics (HIM). 

HIM starting with distortion energy theory of failure, uses 
interface Theory (Briefed in appendix) as the mathematical 
treatment tool to optimize the ratio of change in strain increments 
for different ratios of principal stresses. By principle interface 
theory solves the redundant linear equation for the optimum 
values of the decision vector in the ‘n’ dimensional hyperspace 
defined by an indeterminate equation. The differentiation of the 
distortion energy failure equation results in one equation with two 
unknown variables with redundancy that creates suitable platform 
for application of interface theory, the original contribution in the 
computational mathematics as per the sincere claim of authors. 

The paper is organized into introduction dealing with 
background survey; formulation giving the Hegde’s Instability 
Mechanics (HIM); the implementation is presented in results and 
discussion; and the outcome of the paper in the form of 
conclusion. For brief reference of the interface theory the readers 
are provided with appendix. The authors are honestly confident of 
HIM results being original and different. 

2. Formulation of HIM 
 

In most of the sheet forming application, the thickness stress 
( 3 = 0) is quite small and can be neglected. The attention is 
focused to the plane stress case involving biaxial plain stress 
condition with principal stresses 1 and 2 being considered to 
obtain the increment in the effective stress ( e ) using Von-Misess 
yield criteria. According to this distortions energy theory the 
instability is initiated when one or the other of the loads 
associated with the principal stresses passes through a maximum. 
The distortion energy theory being the most conservative one has 
the form. 
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The Equation (2) is an indeterminate Equation of the form of 
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Case 2: 
For 2 > 1 the interface theory gives  
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By considering the Hill’s anisotropic stress function as, 
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For isotropic material putting R = 1, the Equation (19) and 
(20) get reduced to Equations (16) and (17). According to Swift 
criterion [10] 
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3. Results and discussion 
 

With the substitution of X values for isotropic materials 
(R = 1) in Equations (19) and (20), the values for the strain 
increment ratio is calculated as follows in Tables 1-6. 
 
Table 1.  
Strain increment ratio for 1 > 2 , R = 1 

X  0 0.2 0.5 0.6 0.8 0.9 1.0 

1

2

d
d  

+  3.75 2.0 1.94 2.5 4.07 +  

 
Table 2. 
Strain increments ratio for 1 > 2 and R= 0.89 ( LPG steel) 

X  0 0.2 0.5 0.6 0.8 0.9 1.0 

1

2

d
d  

+  3.94 2.152 2.114 2.27 4.61 +  

 
Table 3. 
Strain increment ratio for Swift criterion 

X  0 0.2 0.5 0.6 0.8 0.9 1.0 

1

2

d
d  

-0.5 -0.269 0.0707 0.199 0.551 0.759 1.0 

 
Table 4. 
Strain increments when R = 1 and 2 > 1  

X  1.1 1.2 1.5 1.6 1.8 1.9 2.0 

1

2

d
d  0.23 0.325 0.5 0.511 0.512 0.507 0.5 

 
Table 5. 
Strain increments for 2 > 1, R = 0.89 

X  1.1 1.2 1.5 1.6 1.8 1.9 2.0 

1

2

d
d  0.2 0.32 0.41 0.47 0.473 0.47 0.464 

 
Table 6. 
Stability analysis using Equation (19); Strain increment ratio 
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R 
0.6 0.7 0.8 

0.5 2.833 3.14 4 
0.6 2.63 2.89 3.65 
0.7 2.438 2.66 3.33 
0.8 2.26 2.45 3.035 
0.9 2.09 2.25 2.76 

2.	� Formulation of HIM

http://www.archicmsse.org
http://www.archicmsse.org
http://www.archicmsse.org
http://www.archicmsse.org


157

Hegde’s instability mechanics for the prediction of forming limit in sheet metal forming

Volume 1  •  Issue 3  •  2009
 

materials. Shear instability in two modes, 1. Bulk-shear band, 2. 
Surface instability band have been investigated by Hutchinson 
and Tvergaard [4]. The forming limit diagrams of sheet metal and 
the influence of the plastic property of the material were of 
consideration in M-K theory [5]. Ghosh and Hecker [6] reported 
highest sensitivity of material imperfection in plane stretching 
than in out of plane stretching. Limit strain potential obtained by 
Chan et al, [7] had given an initial estimate by critical thickness 
strain criterion. Application of generalized criterion of Hill by 
Lian et al. [8] paved way for predicting sheet metal forming limit. 
Date and Padmanabhan [9] attempted to show that shear band to 
flow localization had been formed, irrespective of the presence or 
absence of imperfection. 

The Swifts’ diffuse instability and Hill’s localized instability 
[10] are taken as the starting point in the contribution of this 
paper. In the absence of thickness stress von Misess yield criteria 
gives the effective stress, in the form of distortion energy equation 
of failure in terms of the two principal stresses. This has been 
solved using interface theory by Hegde et al. to optimize variables 
(differential change in principal stresses) to get the change in stain 
increments [11,12]. Further the load maximization condition in 
two principal directions gives the ratio of change in strain 
increments. 

Levaillant and Chenot [13] predicated the defects in sheet 
metal forming being attributed to material process conditions. The 
domain knowledge base in the form of empirical rules for the 
industrial practice had been provided in by Graf and Hosford [14]. 
This gives substantial aid in design of metal forming tools and to 
plan the processes. The stable optimum solution to forming by 
finite element method (FEM) had been provided by Huh and Kim 
as the complication in formed shape needed analysis on 
computers [15]. 

The Swift’s diffusing instability criteria states that instability 
is initiated when increment in the applied effective stress due to 
geometric softening exceeds the stress which can be produced by 
strain hardening. However it fails to explain the shift from diffuse 
instability to localization (necking) in the rate sensitive metals. 
The criterion due to Hill is applicable when one of the principal 
strains describing the deformation state is negative and other is 
positive. Both the diffuse and localization have the due 
explanation in effort of Hegde’s Instability Mechanics (HIM). 

HIM starting with distortion energy theory of failure, uses 
interface Theory (Briefed in appendix) as the mathematical 
treatment tool to optimize the ratio of change in strain increments 
for different ratios of principal stresses. By principle interface 
theory solves the redundant linear equation for the optimum 
values of the decision vector in the ‘n’ dimensional hyperspace 
defined by an indeterminate equation. The differentiation of the 
distortion energy failure equation results in one equation with two 
unknown variables with redundancy that creates suitable platform 
for application of interface theory, the original contribution in the 
computational mathematics as per the sincere claim of authors. 

The paper is organized into introduction dealing with 
background survey; formulation giving the Hegde’s Instability 
Mechanics (HIM); the implementation is presented in results and 
discussion; and the outcome of the paper in the form of 
conclusion. For brief reference of the interface theory the readers 
are provided with appendix. The authors are honestly confident of 
HIM results being original and different. 

2. Formulation of HIM 
 

In most of the sheet forming application, the thickness stress 
( 3 = 0) is quite small and can be neglected. The attention is 
focused to the plane stress case involving biaxial plain stress 
condition with principal stresses 1 and 2 being considered to 
obtain the increment in the effective stress ( e ) using Von-Misess 
yield criteria. According to this distortions energy theory the 
instability is initiated when one or the other of the loads 
associated with the principal stresses passes through a maximum. 
The distortion energy theory being the most conservative one has 
the form. 
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In the uniaxial tension when 2 = 0 the stress ratio is zero and 
there is change in strain only in transverse direction of the sheet 
with no change in strain in longitudinal direction. This leads to 
infinite value to the ratio of differential strains. In the balanced 
biaxial tension, when 2 = 1 the change in strain also in the 
principal directions ‘1’ and ‘2’ are zero. These two explain the 
conditions of instability of diffusion and localization instability of 
the sheet metal forming. In the plane strain tension when 2 = 0.6 1 
the ratio of strain increment is minimum as seen in Figures 1 and 2, 
that explains stability in forming process. The range of stability in 
anisotropic materials is better than that of isotropic materials as 
revealed by the comparison of plots in Figures 1 and 2. The 
mechanism of instability when 1 > 2 is numerically demonstrated 
in Table 1 for the isotropic materials and Table 2 for anisotropic 
material (LPG steel with R=0.89). The results are graphically 
depicted in Fig. 1 and Fig. 2 for isotropic and anisotropic materials 
respectively. When 2 > 1, the stability is evidenced between ratio 
of change strain increments (between 1.6 and 2 of change in stress 
increments) that are maximum for both isotropic and anisotropic 
materials. Beyond and within the stress change ratios 1.6 and 2.0 
the instability observed prominent. The results for the second case 
is tabulated in Tables 4 and 5 and depicted in Fig. 4 and Fig. 5. The 
Table 3 and Fig. 3 projecting the results of Swift theory shows good 
agreement with localization, but a vague picture on diffuse 
instability. From the Equations derived in HIM it is not difficult to 
obtain the change in stress ratio for any change in strain increments 
ratio. Thus it can explain the Hill’s localization condition also. This 
has the evidence in the extensions to Fig. 4 and Fig. 5. The results 
are from application useful, hypothetical and theoretical examples 
which confirm some of the experimental investigations in 
references [13-15]. 

Within the stress ratio 0.5 the load associated with 1 passes 
through maximum hence necking instability (localization) is 
anticipated. When stress ratio exceeds 0.6 and approaches 1.0 
diffuse instability can be observed. This can be inferred from 
Fig. 1. For anisotropic materials the stability is preserved in the 
range of stress ratio 0.5-0.8 emphasizing that anisotropic materials 
exhibit better stability than isotropic materials, which is observed 
from Figures 1 and 2. From Fig. 3 it is clear that Swifts criteria 
fails to explain the localization (necking) instability but confirms 
the diffuse instability of HIM. Fig. 4 and Fig. 5 confirm both the 
instability criteria when 2 > 1 as observed oppositely in Fig. 1 
and Fig. 2. 

 

 
 

Fig. 1. Forming Limit Diagram for 1 > 2, R = 1 

 
 

Fig. 2. Forming Limit Diagram for 1 > 2, R = 0.89 
 

 
 

Fig. 3. Swift Criterion 
 

 
 

Fig. 4. Forming Limit Diagram for 2 > 1, R = 1 
 

The experimental finding of Anand and Spitzig [3] is 
theoretically well justified from Fig. 1 and Fig. 2 as 1 increases 
from 2 onwards the stress ratio 2 / 1 goes on decreasing. 
Between the stress ratio 1 and 0.6 the shear band localization is 
observed before it passes through plane strain tension with 

2 = 0.6 1. Further increase in 1 leading to stress ratio 0.6 to 0.2, 
the effect observed is diffuse necking which is evidenced by 
higher ratio of strain increment. In Fig. 1 the least ratio of strain 
increment is observed at stress ratio of 0.6. 

 

 
 

Fig. 5. Limit Diagram for 2 > 1, R = 0.89 
 

 
 

Fig. 6. Stability Analysis 
 

Fig. 4 and Fig. 5 are forming limit diagrams obtained for 
2 > 1. In the range of stress ratio 1.1 to 1.5 the ratio of strain 

increment keeps on increasing highlighting necking (localization) 
instability. The range of stress ratio ( 2 / 1) 1.5 to 2 is the best for 
sheet metal forming from the point of view of stability beyond 
stress ratio 2 the diffuse instability is anticipated. Again it is a 
subtle point to note that anisotropic materials are more stable than 
isotropic materials in sheet metal forming. The stability of 
anisotropic materials with different is revealed in Table 6 and 
Figure 6. 
 
 

4. Conclusions 
 

Hegde’s Instability Mechanics (HIM) is formulated to study 
the geometric instability in sheet metals made of isotropic and 
anisotropic materials. It highlights that the state of stress and 
anisotropy parameters are responsible for the geometric instability 
in sheet and Hill is accommodated to explain the mechanism by 
single theoretical concept HIM gives sufficient insight and 
explanations to experimental investigations reported by the earlier 
researches, Basing the start of analysis on the distortion energy 
theory and using interface theory as the treatment tool the optimal 
solution to the ratio of strain increments are achieved in HIM. 
Interface theory being authors’ unique contribution works 
optimally to solve the redundant linear system to generate the 

unknown variables in the infinitely dimensioned hyper –space. 
The outcome of HIM shows a different turn to the angle at which 
the instability concept in sheet forming is looked at. Absolute 
perfection in the formulation of HIM is honestly claimed original 
to the knowledge of authors. 
 
 

Appendix: (brief of Interface theory) 
 

The linear redundant Equation in general has the form, 
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Here X i  are the variables to be optimized based on the values of b 
and ai. For the purpose of proof a specific form of (A1) with three 
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the final step. In the final segment the h gets estimated to be the 
ratio of b and the coefficient of the last term in Equation (A1). 
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by back substitution in Equation (A1). 
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(A5) are different and not related. But they are the segments of 
Equation (A2). Hence interface adaptor has to be one and unique as 
can be verified by back-substitution of Xi in Equation (A2). 

Hence to generalize the solutions to Equations (A1) 
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In the uniaxial tension when 2 = 0 the stress ratio is zero and 
there is change in strain only in transverse direction of the sheet 
with no change in strain in longitudinal direction. This leads to 
infinite value to the ratio of differential strains. In the balanced 
biaxial tension, when 2 = 1 the change in strain also in the 
principal directions ‘1’ and ‘2’ are zero. These two explain the 
conditions of instability of diffusion and localization instability of 
the sheet metal forming. In the plane strain tension when 2 = 0.6 1 
the ratio of strain increment is minimum as seen in Figures 1 and 2, 
that explains stability in forming process. The range of stability in 
anisotropic materials is better than that of isotropic materials as 
revealed by the comparison of plots in Figures 1 and 2. The 
mechanism of instability when 1 > 2 is numerically demonstrated 
in Table 1 for the isotropic materials and Table 2 for anisotropic 
material (LPG steel with R=0.89). The results are graphically 
depicted in Fig. 1 and Fig. 2 for isotropic and anisotropic materials 
respectively. When 2 > 1, the stability is evidenced between ratio 
of change strain increments (between 1.6 and 2 of change in stress 
increments) that are maximum for both isotropic and anisotropic 
materials. Beyond and within the stress change ratios 1.6 and 2.0 
the instability observed prominent. The results for the second case 
is tabulated in Tables 4 and 5 and depicted in Fig. 4 and Fig. 5. The 
Table 3 and Fig. 3 projecting the results of Swift theory shows good 
agreement with localization, but a vague picture on diffuse 
instability. From the Equations derived in HIM it is not difficult to 
obtain the change in stress ratio for any change in strain increments 
ratio. Thus it can explain the Hill’s localization condition also. This 
has the evidence in the extensions to Fig. 4 and Fig. 5. The results 
are from application useful, hypothetical and theoretical examples 
which confirm some of the experimental investigations in 
references [13-15]. 

Within the stress ratio 0.5 the load associated with 1 passes 
through maximum hence necking instability (localization) is 
anticipated. When stress ratio exceeds 0.6 and approaches 1.0 
diffuse instability can be observed. This can be inferred from 
Fig. 1. For anisotropic materials the stability is preserved in the 
range of stress ratio 0.5-0.8 emphasizing that anisotropic materials 
exhibit better stability than isotropic materials, which is observed 
from Figures 1 and 2. From Fig. 3 it is clear that Swifts criteria 
fails to explain the localization (necking) instability but confirms 
the diffuse instability of HIM. Fig. 4 and Fig. 5 confirm both the 
instability criteria when 2 > 1 as observed oppositely in Fig. 1 
and Fig. 2. 

 

 
 

Fig. 1. Forming Limit Diagram for 1 > 2, R = 1 

 
 

Fig. 2. Forming Limit Diagram for 1 > 2, R = 0.89 
 

 
 

Fig. 3. Swift Criterion 
 

 
 

Fig. 4. Forming Limit Diagram for 2 > 1, R = 1 
 

The experimental finding of Anand and Spitzig [3] is 
theoretically well justified from Fig. 1 and Fig. 2 as 1 increases 
from 2 onwards the stress ratio 2 / 1 goes on decreasing. 
Between the stress ratio 1 and 0.6 the shear band localization is 
observed before it passes through plane strain tension with 

2 = 0.6 1. Further increase in 1 leading to stress ratio 0.6 to 0.2, 
the effect observed is diffuse necking which is evidenced by 
higher ratio of strain increment. In Fig. 1 the least ratio of strain 
increment is observed at stress ratio of 0.6. 

 

 
 

Fig. 5. Limit Diagram for 2 > 1, R = 0.89 
 

 
 

Fig. 6. Stability Analysis 
 

Fig. 4 and Fig. 5 are forming limit diagrams obtained for 
2 > 1. In the range of stress ratio 1.1 to 1.5 the ratio of strain 

increment keeps on increasing highlighting necking (localization) 
instability. The range of stress ratio ( 2 / 1) 1.5 to 2 is the best for 
sheet metal forming from the point of view of stability beyond 
stress ratio 2 the diffuse instability is anticipated. Again it is a 
subtle point to note that anisotropic materials are more stable than 
isotropic materials in sheet metal forming. The stability of 
anisotropic materials with different is revealed in Table 6 and 
Figure 6. 
 
 

4. Conclusions 
 

Hegde’s Instability Mechanics (HIM) is formulated to study 
the geometric instability in sheet metals made of isotropic and 
anisotropic materials. It highlights that the state of stress and 
anisotropy parameters are responsible for the geometric instability 
in sheet and Hill is accommodated to explain the mechanism by 
single theoretical concept HIM gives sufficient insight and 
explanations to experimental investigations reported by the earlier 
researches, Basing the start of analysis on the distortion energy 
theory and using interface theory as the treatment tool the optimal 
solution to the ratio of strain increments are achieved in HIM. 
Interface theory being authors’ unique contribution works 
optimally to solve the redundant linear system to generate the 

unknown variables in the infinitely dimensioned hyper –space. 
The outcome of HIM shows a different turn to the angle at which 
the instability concept in sheet forming is looked at. Absolute 
perfection in the formulation of HIM is honestly claimed original 
to the knowledge of authors. 
 
 

Appendix: (brief of Interface theory) 
 

The linear redundant Equation in general has the form, 
bXa ii  (A1) 

Here X i  are the variables to be optimized based on the values of b 
and ai. For the purpose of proof a specific form of (A1) with three 
terms is considered as  

bXaXaXa 332211  (A2) 
By the process of decoupling Equation (A2) can be rewritten as  

0111 VXa  (A3) 
Where the decoupled segment, bXaXaV 33221  

The Equation (A3) is an indeterminate Equation for which the 
handle roots (initial roots) are 

),1(),( 111 aVX . 
But Equation (A3) has infinite roots which are accomplished 

by proportionating handle roots by an interface adaptor h which is 
kept as common variable till the process of segmentation reaches 
the final step. In the final segment the h gets estimated to be the 
ratio of b and the coefficient of the last term in Equation (A1). 
The values of h are then substituted in the expressions for Xi. 
Once the roots Xi are obtained, the validity can be cross-checked 
by back substitution in Equation (A1). 

The solutions to Equation (A3) are 
hahVX 111 ,,  

Now after decoupling haVXa 1222  (A4) 
The Equation (A4) has the solutions  

hah
a
a

VX 2
2

1
22 ,1,  

Now haVXa 2333  (A5) 
The solutions to Equation (A5) are 

hah
a
aVX 3

3

2
33 ,1,  

But ,33 habV  Hence
3a

bh , The interface 

adaptor, h can take different values if the Equations (A3), (A4), and 
(A5) are different and not related. But they are the segments of 
Equation (A2). Hence interface adaptor has to be one and unique as 
can be verified by back-substitution of Xi in Equation (A2). 

Hence to generalize the solutions to Equations (A1) 
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It may be observed from the solutions to Xi that the positive 
optimal values are achieved when ai < ai+1, (with b, and an are to 
be assumed positive) so that the co-efficient of the Equation (A1) 
are arranged in the ascending order of their magnitude. The same 
concept is made use in solving the Equation (2) of distortion 
energy theory of failure in this paper. 
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