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ABSTRACT

Purpose: The purpose of the paper is to characterize of syndiotactic polystyrene/carbon nanofiber composites 
through X-ray diffraction using adaptive neuro-fuzzy interference system and artificial neural network. Owing to 
their interesting mechanical, electrical and thermal properties, syndiotactic polystyrene (s-PS)/carbon nanofiber 
(CNF) composites have gained adequate importance in the scientific and industrial communities and as a result, 
characterization of s-PS/ CNF is an issue of major interest to the researchers.
Design/methodology/approach: In the present paper, two quantitative models, based on adaptive neuro-
fuzzy interference system (ANFIS) and artificial neural network (ANN), are developed and compared with a 
goal of accurately predicting the intensity values from the scattering angle values in X-ray Diffraction (XRD) of 
syndiotactic polystyrene (s-PS)/carbon nanofiber (CNF) composites.
Findings: Results demonstrate that both the proposed models are highly effective in estimating intensity from scattering 
angle. However, more accurate results are obtained with the ANFIS model as compared to the ANN model.
Research limitations/implications: The results of the investigations carried out in this study is suggestive of 
the fact that both ANFIS and ANN can be used quite effectively for prediction of intensity from scattering angle 
values in XRD of s-PS/ CNF composites.
Originality/value: The proposed ANFIS and ANN model-predicted intensity values are in very good agreement 
with the experimental intensity values. However, it is seen that, irrespective of the type of composite sample, the 
proposed ANFIS models outperform the proposed ANN models in terms of prediction accuracy.
Keywords: Syndiotactic polystyrene; Carbon Nanofiber; X-ray diffraction; Artificial Neural Network; Adaptive 
neuro-fuzzy interference system
Reference to this paper should be given in the following way:
S. Bose, D. Shome, C.K. Das, Characterisation of syndiotactic polystyrene/carbon nanofiber composites through 
X-ray diffraction using adaptive neuro-fuzzy interference system and artificial neural network, Archives of 
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1. Introduction 
 

Adequate importance in the scientific and industrial 
communities have been gained by Syndiotactic polystyrene (s-
PS)/carbon nanofiber (CNF) composites owing to their interesting 
mechanical, electrical and thermal properties. The interesting 
mechanical, electrical and thermal properties of the above-
mentioned composites are mainly because of their high aspect 
ratio [10,11]. For a high performance nano-filler/polymer 
composites, a homogeneous dispersion of the fillers in the 
polymer matrices as well as a strong interface interaction between 
the polymer and the fillers, are two very important criteria. In 
order to develop a strong interface interaction between the 
polymer and the fillers, appropriate particle size/crystallite size of 
dispersed phase must be achieved [10,11], which in turn can be 
assessed from the peak intensity. Moreover, stronger nucleating 
effect of fibers is dependent on the concentration of CNF’s 
loadings into the polymer matrix [7] and this concentration can 
also be estimated from the peak intensity. As a result, 
characterization (XRD) of Syndiotactic polystyrene (s-PS)/carbon 
nanofiber (CNF) with a view of assessing the peak intensity is an 
issue of major concern. 

Several studies [7,10,11] on characterization of Syndiotactic 
polystyrene (s-PS)/carbon nanofiber (CNF) composites through 
X-ray diffraction (XRD) have been reported in the literature. 
However, the potential of a quantitative model in estimating peak 
intensity in XRD of Syndiotactic polystyrene (s-PS)/carbon 
nanofiber (CNF) composites still remains unexplored. This 
inadequacy calls for further research from the viewpoint of 
proposing accurate quantitative model(s) for accomplishing 
accurate estimation of peak intensity in XRD of Syndiotactic 
polystyrene (s-PS)/carbon nanofiber (CNF) composites.  

In this study, X-ray diffraction (XRD) of four types of 
Syndiotactic polystyrene (s-PS)/carbon nanofiber (CNF) 
composite samples (having different composition) are conducted 
and for each sample, an ANFIS [12,13,16-18] as well as an ANN 
model [5,9,15] are proposed for prediction of the intensity values 
from scattering angle values. Investigations carried out reveal 
that, for each of the composite samples, relatively more accurate 
results are obtained through the corresponding ANFIS model.  
 
 

2. Experimentation 
 

This section presents detailed discussions about various 
aspects pertaining to experimentation carried out in this study. 
 
 
2.1. Materials 
 

The CNFs used in the current study are designated as CNF- 
100, and are from Carbon Nano-material Technology Co. Ltd., 
Korea. The diameter, length and aspect ratio were 40–140 nm,  
2–10µm and ˜100, respectively. Syndiotactic polystyrene used in 
this study was obtained from PolyOne Germany. The glass 
transition temperature (Tg) and the crystalline melting 
temperature (Tm) of s-PS are 95-1000C and 270-2800C, 
respectively. 

2.2. Experimental procedure 
 

In this section, the procedure followed for conducting 
experiments in this study is described in details. 
 
 
Preparation of s-PS/CNF Composite 

Before the start of mixing, the s-PS pellets were dried under 
vacuum at 800C for at least 12 h and CNF-100 were dried under 
vacuum at 3000C for the same time. s-PS /CNF composites were 
prepared in a Sigma high temperature internal mixer equipped 
with two counter-rotating Sigma type rotors at 3200C, with a 
speed of 100 rpm and a mixing time of 5-8 minutes. The 
procedure was as follows: firstly the polymer was melted. After 
that carbon nanofibers were incorporated into the molten polymer 
matrix. In this typical experiment 100 phr of s-PS pellet were 
mixed with 2, 4 or 6 phr of CNFs. 

The neat s-PS, s-PS /CNFs samples were dried at 80 0C for 
12 h and then the obtained composites were compression molded 
under a pressure of about 15 MPa at 3000C for 10 min. The 
samples were allowed to cool to room temperature under the same 
pressure at the rate of 2 0C/min. Formulations of the s-PS/CNF 
composites are shown in Table 1. 
 
Table 1.  
Formulation of s-PS/CNF composites 

Sample 
Code 

s-PS (phr) CNF (phr) 

P 100 - 
A 100 2 
B 100 4 
X 100 6 

 
 
Characterization using X-Ray Diffraction (XRD) 

X-Ray Diffraction was studied using PW 1840 X-ray 
diffractometer with Cu-K  -targets at 2mm slits at a scanning rate 
of 0.050 2 /sec., chart speed 10 mm/2 , range 5000c/s, applying 
40 kV, 20 mA, to get the idea of the relative crystallinity of the 
composites. The crystalline and amorphous portion was 
determined by arbitrary units. The degree of crystallinity c was 
measured using the following relationship:  

c = Ia/(Ia+Ic). 
where, Ia and Ic are the integrated intensity of the crystalline and 
amorphous region respectively, where, the crystallite sizes (P) and 
the interplaner distance (d) were calculated as follows: 

P=K /  Cos . 
d= /2 Sin  

where,  is the half height width (in radian) of the crystalline peak 
and  is the wave length of the X-Ray radiation (1.548 for Cu) 
and k is the Scehrrer constant taken as 0.9. 
 
 

3. Modelling of intensity in XRD 
This section carries out detailed discussions about the ANFIS 

and the ANN models proposed in this paper for prediction of 
intensity in XRD of s-PS/CNF composites.  

 

3.1 Proposed ANFIS models 
 

In this study, a total of four five-layer ANFIS models are 
developed for the purpose of predicting intensity from scattering 
angle. Figure 1 exhibit the general architecture of the ANFIS 
models used in this study. An ANFIS model is highly effective in 
terms of prediction accuracy [16]. The input parameter of each of 
the ANFIS models is scattering angle (S) and the output 
parameter is intensity. Various important aspects pertaining to the 
ANFIS models developed in this paper and their training are 
given in Table 2. For each of the ANFIS models developed in this 
study, the number of rules to be used in the ANFIS model, the 
number of membership functions to be assigned to each input 
variable of the concerned ANFIS model, and the number of 
training epochs required for training the concerned ANFIS model, 
are decided based on a trial and error approach. A first order 
Takagi-Sugeno-Kang fuzzy model [19] is used for each of the 
ANFIS developed in this study because it is computationally more 
effective than other fuzzy models, such as, Mamdani and 
Tsukamoto models [20]. In this study, generalized bell- shaped 
membership functions are used for specifying fuzzy sets for the 
concerned ANFIS models due to their smoothness and concise 
notation [20]. A hybrid learning algorithm [17] is adopted for 
training each of the ANFIS models because it has the capability of 
increasing the speed of the ANFIS’s learning process [16]. During 
training, the value of initial step size is fixed at 0.01 because the 
value of initial step size does not adversely affect the performance 
of a trained ANFIS model unless it is too high [16].  
 

 
 

Fig. 1. General Architecture of ANFIS Model 
 

The convergence of error during training process of the 
proposed ANFIS are shown in Figures 2-5. The ANFIS models 
for sample A, sample B, sample X and sample P are trained with 
1000, 1000, 1000 and 800 data sets respectively and validated 
(tested) with 24, 23, 21, 20 data sets respectively. The mean % 
errors (furnished in Table 3) of the ANFIS models is determined 
using the following expression:  
 

Mean Absolute Error = 1001 100
1

pn k
n qk k

 % 

where, qk represent the experimental intensity values and pk 
represent those predicted by the trained ANFIS model and n 
represents the total number of datasets. 
 
 
Table 2.  
Details of some important aspects associated with the ANFIS 
Model 

Number of input variables: 1 
Number of output variables: 1 
Number of network layers: 5 
Number of fuzzy sets for 
each input parameter: 

15 

Initial step size: 0.01 
Number of rules: 15 
ANFIS model type: First-order Takagi-Sugeno-

Kang model 
Number of training 
iterations: 

500 

Input membership function 
type: 

Generalized Bell-Shaped  

Output membership 
function type: 

Linear 

ANFIS Training method: Hybrid (Gradient descent 
method for the antecedent 
parameters and least squares 
estimation method for the 
consequent parameters) 
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Fig. 2. Convergence of error during training of ANFIS for sample A 
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Fig. 3. Convergence of error during training of ANFIS for sample B 
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Fig. 1. General Architecture of ANFIS Model 
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Fig. 2. Convergence of error during training of ANFIS for sample A 
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Fig. 3. Convergence of error during training of ANFIS for sample B 
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Fig. 4. Convergence of error during training of ANFIS for sample X 
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Fig. 5. Convergence of error during training of ANFIS for sample P 
 
 
Table 3.  
Comparison between the proposed ANFIS and ANN Models 

Sample Model Mean % Error 
(training) 

Mean % Error 
(test) 

ANFIS 5.02 3.53 A ANN 4.93 4.84 
ANFIS 5.39 2.97 B ANN 5.30 4.58 
ANFIS 5.07 3.22 X ANN 2.50 5.83 
ANFIS 2.47 2.35 P ANN 4.69 2.78 

 
 
3.2 Proposed ANN models 
 

In this study, a total of four three-layer neural networks are 
developed for the purpose of predicting intensity from scattering 
angle. The neural networks used for predicting intensity from 
scattering angle in case of samples A, B, X and P have 39, 39, 70 
and 28 hidden nodes respectively. Figure 6 exhibit the general 
architecture of the ANN models used in this study. There is one 
input node and one output node representing scattering angle and 
intensity respectively. The basic requirement for any neural 
network to have a good capacity of predicting the output from 
unseen input(s) (input(s) not presented to the concerned network 
during its training) is the presence of the minimum number of 
hidden nodes required for the above-mentioned purpose [14]. 
Each of the neural networks developed (as mentioned above) is 
trained through Bayesian Regularization algorithm [2-4,6,8,14] to 
increase the network’s efficiency of accurately predicting unseen 

data. The neural networks for the composite ssamples mentioned 
above are trained and validated with the same datasets as used for 
training and validation of the ANFIS models. 500 training 
iterations are used for training each of the ANN models developed 
in this study. Before training, the input parameter as well as the 
output parameter are normalized in the range of 0 to 1. Bayesian 
regularization is based on the assumption that the true underlying 
function between input–output pairs should be smooth and the 
desired smoothness can be achieved by keeping network weights 
small and well distributed within the network [14]. The 
performance of a neural network in Bayesian Regularization 
algorithm is estimated using the following relation [3,4]: 
F = (SSE) + (SSW) 
where, 
F = Performance Index, 

SSE = Sum of error squares = 
2

1

n a p
y yz zz

,  

for z = 1, 2,……..,n 
where, n = the total number of data sets used for training and ya

z 
and yp

z represent the actual and predicted outputs respectively.  
2 2 2 2

,, ,
SSW w v b bij jk j krr i ii j k

   

 
for i=1,2…..,q; j=1,2……,r; k=1,2,.…..,s; 
where, q=number of input nodes, r=number of hidden nodes, 
s=number of output nodes. 

,  are regularization parameters. 
 

 
 
Fig. 6. General Architecture of ANN Model I1 is the input 
parameter (O1is the output parameter, V11, V12,…………….,Vn1 
are the weights of synapses connecting hidden neurons and output 
neurons, W11, W12,…………….,W1n are the weights of synapses 
connecting input neurons and hidden neurons, n = Number of 
hidden nodes 

 

The values of mean % errors (furnished in Table 3) are 
calculated as follows: 

 

Mean % error =
1

1001 100
pn
z

a
z z

y
n y

, for z = 1, 2,……..,n 

The values of SSE (training), SSW, NOEP (number of 
effective parameters) and mean % error (test), as obtained from 
the training of the ANNs of the present study, are shown in 
Tables 4-7. From Table 4, it is observed that, the values of, SSE, 
SSW, NOEP and mean % error (test) for model no. 12 are 0.36, 
59475, 62.2 and 4.84 respectively which are roughly consistent 
even if the number of hidden nodes increases. Similarly, from 
Table 5, it is observed that, the values of, SSE, SSW, NOEP and 
mean % error (test) for model no. 7 are 0.33, 56354, 63.7 and 4.58 
respectively which are roughly consistent even if the number of 
hidden nodes increases. Again Table 6 shows that, the values of 
SSE, SSW, NOEP and mean % error (test) for model no. 4 are 
0.089, 21316, 43.9 and 2.78 respectively, which are roughly 
consistent no matter whatever be the total number of hidden 
nodes. From Table 7, it is observed that, the values of, SSE, SSW, 
NOEP and mean % error (test) for model no. 8 are 0.254, 352799, 
117.3 and 5.73 respectively, which are approximately same even 
if the number of hidden nodes increases. The results presented in 
Tables 4 -7 act as a guideline for selection of the optimal-sized 
neural network and based on these results ANN model no. 12, 7, 4 
and 8 are selected for predicting intensity from scattering angle in 
case of sample A, B, P and X respectively.  
 
 
 

4. Results and discussions 
 

This section discusses in details the behaviour of the lattice 
parameters observed from the XRD results. A discussion on the 
training and validation results of the proposed ANFIS and ANN 
models are also presented followed by a comparison between 
those models.  
 
 
4.1 Investigation of lattice parameters through 
XRD
 

The result obtained from X-ray diffraction spectra of s-
PS/CNF composites is represented in Figure 7 and the values are 
given in Table 3. Considering the maximum single peak value 
(2  = 20.35°) of the s-PS/CNF composites, the features like 
crystallite size, and interlayer spacing are calculated. The value of 
crystallite size of pure s-PS, sample A, sample B, and sample X 
are 28.45 Å (d ~ 4.45), 37.1Å (d ~ 4.38), 47.7Å (d ~ 4.40), and 
48.2 Å (d ~ 4.41) respectively. The decrease in the spacing for 
sample A, as compared to pure s-PS, explains that the composite 
structure is more compact. But the interlayer spacing increases 
with an increase in the CNFs loading which indicates the 
intercalation of s-PS into carbon nanofibers.  In case of sample X, 
the crystallite size does not change appreciably as compared to 
sample B, suggesting that almost enough carbon nanofibers are 

present in sample B to provide sufficient surface area for the 
crystal to grow. The increase in the crystallite size matches with 
the heteronucleation effect of the carbon nanofiber. 
 
 
 
Table 4.  
Training Results for different ANN Architectures for sample A 

ANN 
model 

no. 

No. of 
Hidden 
layers 

SSE SSW NOEP TNOEP
Mean % 

Error 
(test) 

1 20 0.39 20237.8 37.3 61 4.48 
2 21 0.39 21069 41.2 64 4.37 
3 22 0.39 22130 41.9 67 4.34 
4 23 0.39 62672 51.9 70 4.95 
5 25 0.38 34054.6 50.4 76 4.81 
6 27 0.39 21257.1 41.5 82 4.82 
7 30 0.39 23154 43.8 91 4.40 
8 32 0.37 40600.1 55.6 97 4.91 
9 36 0.37 48490 58.6 109 4.51 

10 37 0.36 86617 66.9 112 4.46 
11 38 0.36 71535 64.2 115 3.98 
12 39 0.36 59475 62.2 118 4.84 
13 41 0.36 61162.4 63.1 124 3.84 
14 42 0.36 60768 62.5 127 4.92 
15 43 0.36 62069 63.4 130 4.79 
16 44 0.36 58796.6 62.4 133 4.94 
17 45 0.36 60626 63.5 136 4.93 
18 46 0.36 61759 63.4 139 4.78 
19 47 0.36 60170 65.1 142 4.92 

 
 
 
Table 5.  
Training Results for different ANN Architectures of sample B 

ANN 
model 

no. 

No. of 
Hideen 
layers 

SSE SSW NOEP TNOEP Mean % 
Error 

1 25 0.34 44280 52.8 76 4.55 
2 29 0.34 50361 54.5 86 4.52 
3 33 0.34 71529 59.9 100 4.53 
4 36 0.33 63589 63.7 109 4.53 
5 37 0.33 50864 59.4 112 4.55 
6 38 0.33 49775 59.6 115 4.45 
7 39 0.33 56354 63.7 118 4.58 
8 40 0.33 57190 64.1 121 4.49 
9 41 0.33 56122 64.3 124 4.52 
10 42 0.33 57377 65 127 4.51 
11 43 0.33 57331 64.1 130 4.51 
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Fig. 4. Convergence of error during training of ANFIS for sample X 
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Fig. 5. Convergence of error during training of ANFIS for sample P 
 
 
Table 3.  
Comparison between the proposed ANFIS and ANN Models 

Sample Model Mean % Error 
(training) 

Mean % Error 
(test) 

ANFIS 5.02 3.53 A ANN 4.93 4.84 
ANFIS 5.39 2.97 B ANN 5.30 4.58 
ANFIS 5.07 3.22 X ANN 2.50 5.83 
ANFIS 2.47 2.35 P ANN 4.69 2.78 

 
 
3.2 Proposed ANN models 
 

In this study, a total of four three-layer neural networks are 
developed for the purpose of predicting intensity from scattering 
angle. The neural networks used for predicting intensity from 
scattering angle in case of samples A, B, X and P have 39, 39, 70 
and 28 hidden nodes respectively. Figure 6 exhibit the general 
architecture of the ANN models used in this study. There is one 
input node and one output node representing scattering angle and 
intensity respectively. The basic requirement for any neural 
network to have a good capacity of predicting the output from 
unseen input(s) (input(s) not presented to the concerned network 
during its training) is the presence of the minimum number of 
hidden nodes required for the above-mentioned purpose [14]. 
Each of the neural networks developed (as mentioned above) is 
trained through Bayesian Regularization algorithm [2-4,6,8,14] to 
increase the network’s efficiency of accurately predicting unseen 

data. The neural networks for the composite ssamples mentioned 
above are trained and validated with the same datasets as used for 
training and validation of the ANFIS models. 500 training 
iterations are used for training each of the ANN models developed 
in this study. Before training, the input parameter as well as the 
output parameter are normalized in the range of 0 to 1. Bayesian 
regularization is based on the assumption that the true underlying 
function between input–output pairs should be smooth and the 
desired smoothness can be achieved by keeping network weights 
small and well distributed within the network [14]. The 
performance of a neural network in Bayesian Regularization 
algorithm is estimated using the following relation [3,4]: 
F = (SSE) + (SSW) 
where, 
F = Performance Index, 

SSE = Sum of error squares = 
2

1

n a p
y yz zz

,  

for z = 1, 2,……..,n 
where, n = the total number of data sets used for training and ya

z 
and yp

z represent the actual and predicted outputs respectively.  
2 2 2 2

,, ,
SSW w v b bij jk j krr i ii j k

   

 
for i=1,2…..,q; j=1,2……,r; k=1,2,.…..,s; 
where, q=number of input nodes, r=number of hidden nodes, 
s=number of output nodes. 

,  are regularization parameters. 
 

 
 
Fig. 6. General Architecture of ANN Model I1 is the input 
parameter (O1is the output parameter, V11, V12,…………….,Vn1 
are the weights of synapses connecting hidden neurons and output 
neurons, W11, W12,…………….,W1n are the weights of synapses 
connecting input neurons and hidden neurons, n = Number of 
hidden nodes 

 

The values of mean % errors (furnished in Table 3) are 
calculated as follows: 

 

Mean % error =
1

1001 100
pn
z

a
z z

y
n y

, for z = 1, 2,……..,n 

The values of SSE (training), SSW, NOEP (number of 
effective parameters) and mean % error (test), as obtained from 
the training of the ANNs of the present study, are shown in 
Tables 4-7. From Table 4, it is observed that, the values of, SSE, 
SSW, NOEP and mean % error (test) for model no. 12 are 0.36, 
59475, 62.2 and 4.84 respectively which are roughly consistent 
even if the number of hidden nodes increases. Similarly, from 
Table 5, it is observed that, the values of, SSE, SSW, NOEP and 
mean % error (test) for model no. 7 are 0.33, 56354, 63.7 and 4.58 
respectively which are roughly consistent even if the number of 
hidden nodes increases. Again Table 6 shows that, the values of 
SSE, SSW, NOEP and mean % error (test) for model no. 4 are 
0.089, 21316, 43.9 and 2.78 respectively, which are roughly 
consistent no matter whatever be the total number of hidden 
nodes. From Table 7, it is observed that, the values of, SSE, SSW, 
NOEP and mean % error (test) for model no. 8 are 0.254, 352799, 
117.3 and 5.73 respectively, which are approximately same even 
if the number of hidden nodes increases. The results presented in 
Tables 4 -7 act as a guideline for selection of the optimal-sized 
neural network and based on these results ANN model no. 12, 7, 4 
and 8 are selected for predicting intensity from scattering angle in 
case of sample A, B, P and X respectively.  
 
 
 

4. Results and discussions 
 

This section discusses in details the behaviour of the lattice 
parameters observed from the XRD results. A discussion on the 
training and validation results of the proposed ANFIS and ANN 
models are also presented followed by a comparison between 
those models.  
 
 
4.1 Investigation of lattice parameters through 
XRD
 

The result obtained from X-ray diffraction spectra of s-
PS/CNF composites is represented in Figure 7 and the values are 
given in Table 3. Considering the maximum single peak value 
(2  = 20.35°) of the s-PS/CNF composites, the features like 
crystallite size, and interlayer spacing are calculated. The value of 
crystallite size of pure s-PS, sample A, sample B, and sample X 
are 28.45 Å (d ~ 4.45), 37.1Å (d ~ 4.38), 47.7Å (d ~ 4.40), and 
48.2 Å (d ~ 4.41) respectively. The decrease in the spacing for 
sample A, as compared to pure s-PS, explains that the composite 
structure is more compact. But the interlayer spacing increases 
with an increase in the CNFs loading which indicates the 
intercalation of s-PS into carbon nanofibers.  In case of sample X, 
the crystallite size does not change appreciably as compared to 
sample B, suggesting that almost enough carbon nanofibers are 

present in sample B to provide sufficient surface area for the 
crystal to grow. The increase in the crystallite size matches with 
the heteronucleation effect of the carbon nanofiber. 
 
 
 
Table 4.  
Training Results for different ANN Architectures for sample A 

ANN 
model 

no. 

No. of 
Hidden 
layers 

SSE SSW NOEP TNOEP
Mean % 

Error 
(test) 

1 20 0.39 20237.8 37.3 61 4.48 
2 21 0.39 21069 41.2 64 4.37 
3 22 0.39 22130 41.9 67 4.34 
4 23 0.39 62672 51.9 70 4.95 
5 25 0.38 34054.6 50.4 76 4.81 
6 27 0.39 21257.1 41.5 82 4.82 
7 30 0.39 23154 43.8 91 4.40 
8 32 0.37 40600.1 55.6 97 4.91 
9 36 0.37 48490 58.6 109 4.51 

10 37 0.36 86617 66.9 112 4.46 
11 38 0.36 71535 64.2 115 3.98 
12 39 0.36 59475 62.2 118 4.84 
13 41 0.36 61162.4 63.1 124 3.84 
14 42 0.36 60768 62.5 127 4.92 
15 43 0.36 62069 63.4 130 4.79 
16 44 0.36 58796.6 62.4 133 4.94 
17 45 0.36 60626 63.5 136 4.93 
18 46 0.36 61759 63.4 139 4.78 
19 47 0.36 60170 65.1 142 4.92 

 
 
 
Table 5.  
Training Results for different ANN Architectures of sample B 

ANN 
model 

no. 

No. of 
Hideen 
layers 

SSE SSW NOEP TNOEP Mean % 
Error 

1 25 0.34 44280 52.8 76 4.55 
2 29 0.34 50361 54.5 86 4.52 
3 33 0.34 71529 59.9 100 4.53 
4 36 0.33 63589 63.7 109 4.53 
5 37 0.33 50864 59.4 112 4.55 
6 38 0.33 49775 59.6 115 4.45 
7 39 0.33 56354 63.7 118 4.58 
8 40 0.33 57190 64.1 121 4.49 
9 41 0.33 56122 64.3 124 4.52 
10 42 0.33 57377 65 127 4.51 
11 43 0.33 57331 64.1 130 4.51 
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Table 6.  
Training Results for different ANN Architectures of sample P 

ANN model no. No. of 
Hideen layers SSE SSW NOEP TNOEP Mean % Error 

(test) 
1 20 0.11 6941 28.01 61 2.79 
2 25 0.09 17014 41.04 76 2.83 
3 27 0.09 12830 37.6 82 2.79 
4 28 0.089 21316 43.9 85 2.78 
5 30 0.089 21415.8 44.09 91 2.84 
6 32 0.089 20995 43.09 97 2.78 
7 35 0.089 22503 43.94 106 2.83 

 
Table 7.  
Training Results for different ANN Architectures of sample X 

ANN model no. No. of 
Hideen layers SSE SSW NOEP TNOEP Mean % Error 

(test) 
1 35 0.277 262289 72 106 5.60 
2 45 0.27 182484 82.1 136 5.68 
3 50 0.265 212325 94.3 151 5.65 
4 65 0.257 262044 107 196 5.62 
5 66 0.258 238432 102 199 5.61 
6 68 0.257 260221 104 205 5.67 
7 69 0.259 212706 98 208 5.68 
8 70 0.254 352799 117.3 211 5.73 
9 75 0.254 357832 118.3 226 5.69 
10 78 0.254 354036 119 235 5.70 
12 80 0.254 354193 118.2 217 5.72 

 

 
 

Fig. 7. X-ray diffraction spectra of s-PS/CNF composites 
 
 
4.2 Training and validation results for the 
proposed ANFIS and ANN models 
 

This section presents the results obtained on using the 
proposed ANFIS and ANN models for prediction of intensity 
from scattering angle in case of samples A, B, X, and P. Figures 

8, 9, 10, and 11 exhibit the comparison of the experimental 
(XRD) and ANN model-predicted intensity values corresponding 
to sample A, B, P, and X respectively whereas the comparison of 
the experimental (XRD) and ANFIS model-predicted intensity 
values corresponding to sample A, B, X, and P are presented 
through Figures 12, 13, 14, and 15 respectively. The closeness of 
the experimental and the proposed model-estimated intensity 
values observed from each of the above-mentioned Figures 
(Figures 8 – 15) clearly points towards the proposed models’ high 
potential in predicting intensity from scattering angle in XRD of 
s-PS/CNF composites. 
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Fig. 8. Comparison of the experimental (XRD) and ANN model-
predicted intensity values for sample A 
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Fig. 9. Comparison of the experimental (XRD) and ANN model-
predicted intensity values for sample B 
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Fig. 10. Comparison of the experimental (XRD) and ANN model-
predicted intensity values for sample P 
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Fig 11. Comparison of the experimental (XRD) and ANN model-
predicted intensity values for sample X 
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Fig. 12. Comparison of the experimental (XRD) and ANFIS 
model-predicted intensity values for sample A 
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Fig. 13. Comparison of the experimental (XRD) and ANFIS 
model-predicted intensity values for sample B 
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Fig. 14. Comparison of the experimental (XRD) and ANFIS 
model-predicted intensity values for sample X 
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Fig. 15. Comparison of the experimental (XRD) and ANFIS 
model-predicted intensity values for sample P 
 
 
4.3 Comparison between the proposed ANFIS 
and ANN models 
 

Table 3 carries out a comparison of the proposed ANFIS and 
ANN models. From Table 3, it is evident that, for each of the 
composite samples used in this study, the proposed ANFIS model 
is substantially superior to the corresponding ANN model in 
terms of mean % error (training) as well as in terms of mean % 
error (test). However, in case of sample P, it is seen that, the 
prediction accuracy achieved with the proposed ANFIS model is 
not very much higher than that achieved with the corresponding 
ANN model. The above observations are further justified 
pictorially through Figure 16. 

4.2.	� Training and validation results for the  
proposed ANFIS and ANN models
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Table 6.  
Training Results for different ANN Architectures of sample P 

ANN model no. No. of 
Hideen layers SSE SSW NOEP TNOEP Mean % Error 

(test) 
1 20 0.11 6941 28.01 61 2.79 
2 25 0.09 17014 41.04 76 2.83 
3 27 0.09 12830 37.6 82 2.79 
4 28 0.089 21316 43.9 85 2.78 
5 30 0.089 21415.8 44.09 91 2.84 
6 32 0.089 20995 43.09 97 2.78 
7 35 0.089 22503 43.94 106 2.83 

 
Table 7.  
Training Results for different ANN Architectures of sample X 

ANN model no. No. of 
Hideen layers SSE SSW NOEP TNOEP Mean % Error 

(test) 
1 35 0.277 262289 72 106 5.60 
2 45 0.27 182484 82.1 136 5.68 
3 50 0.265 212325 94.3 151 5.65 
4 65 0.257 262044 107 196 5.62 
5 66 0.258 238432 102 199 5.61 
6 68 0.257 260221 104 205 5.67 
7 69 0.259 212706 98 208 5.68 
8 70 0.254 352799 117.3 211 5.73 
9 75 0.254 357832 118.3 226 5.69 
10 78 0.254 354036 119 235 5.70 
12 80 0.254 354193 118.2 217 5.72 

 

 
 

Fig. 7. X-ray diffraction spectra of s-PS/CNF composites 
 
 
4.2 Training and validation results for the 
proposed ANFIS and ANN models 
 

This section presents the results obtained on using the 
proposed ANFIS and ANN models for prediction of intensity 
from scattering angle in case of samples A, B, X, and P. Figures 

8, 9, 10, and 11 exhibit the comparison of the experimental 
(XRD) and ANN model-predicted intensity values corresponding 
to sample A, B, P, and X respectively whereas the comparison of 
the experimental (XRD) and ANFIS model-predicted intensity 
values corresponding to sample A, B, X, and P are presented 
through Figures 12, 13, 14, and 15 respectively. The closeness of 
the experimental and the proposed model-estimated intensity 
values observed from each of the above-mentioned Figures 
(Figures 8 – 15) clearly points towards the proposed models’ high 
potential in predicting intensity from scattering angle in XRD of 
s-PS/CNF composites. 
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Fig. 8. Comparison of the experimental (XRD) and ANN model-
predicted intensity values for sample A 
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Fig. 9. Comparison of the experimental (XRD) and ANN model-
predicted intensity values for sample B 
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Fig. 10. Comparison of the experimental (XRD) and ANN model-
predicted intensity values for sample P 
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Fig 11. Comparison of the experimental (XRD) and ANN model-
predicted intensity values for sample X 
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Fig. 12. Comparison of the experimental (XRD) and ANFIS 
model-predicted intensity values for sample A 
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Fig. 13. Comparison of the experimental (XRD) and ANFIS 
model-predicted intensity values for sample B 
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Fig. 14. Comparison of the experimental (XRD) and ANFIS 
model-predicted intensity values for sample X 
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Fig. 15. Comparison of the experimental (XRD) and ANFIS 
model-predicted intensity values for sample P 
 
 
4.3 Comparison between the proposed ANFIS 
and ANN models 
 

Table 3 carries out a comparison of the proposed ANFIS and 
ANN models. From Table 3, it is evident that, for each of the 
composite samples used in this study, the proposed ANFIS model 
is substantially superior to the corresponding ANN model in 
terms of mean % error (training) as well as in terms of mean % 
error (test). However, in case of sample P, it is seen that, the 
prediction accuracy achieved with the proposed ANFIS model is 
not very much higher than that achieved with the corresponding 
ANN model. The above observations are further justified 
pictorially through Figure 16. 
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Fig. 16. Comparison of accuracy of the proposed ANFIS and 
ANN models 
 
 

5. Conclusions 
 

The results of the investigations carried out in this study is 
suggestive of the fact that both ANFIS and ANN can be used 
quite effectively for prediction of intensity from scattering angle 
values in XRD of s-PS/ CNF composites. The proposed ANFIS 
and ANN model-predicted intensity values are in very good 
agreement with the experimental intensity values. However, it is 
seen that, irrespective of the type of composite sample, the 
proposed ANFIS models outperform the proposed ANN models 
in terms of prediction accuracy. Accordingly, it may be concluded 
that, as far as XRD-based characterization of s-PS/CNF 
composites is concerned, the quantitative models proposed in this 
study may act as useful aids.  
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