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ABSTRACT

Purpose: The purpose of this study is to develop a methodology for material design, enabling the selection of 
the chemical elements concentration, heat and plastic treatment conditions and geometrical dimensions to ensure 
the required mechanical properties of structural steels specified by the designer of machinery and equipment as 
the basis for the design of material components manufactured from these steels, by using a computational model 
developed with use of artificial intelligence methods and virtual environment. The model is designed to provide 
impact examinations of these factors on the mechanical properties of steel only in the computing environment.
Design/methodology/approach: A virtual research environment built with use of computational model 
describing relationships between chemical composition, heat and plastic treatment conditions, product geometric 
dimensions and mechanical properties of the examined group of steels was developed and practical applied. This 
model enables the design of new structural steel by setting the values of mechanical properties based on material 
production descriptors and allows the selection of production descriptors on the basis of the mechanical properties 
without the need for additional tests or experimental studies in reality.
Findings: Virtual computing environment allows full usage of the developed intelligent model of non-alloy and 
alloy structural steel properties and provides an easy, intuitive and user-friendly way to designate manufacturing 
descriptors and mechanical properties for products.
Research limitations/implications:The proposed solutions allow the usage of developed virtual environment as 
a new medium in both, the scientific work performed remotely, as well as in education during classes.
Practical implications: The new material design methodology has practical application in the development of 
materials and modelling of steel descriptors in aim to improve the mechanical properties and specific applications 
in the production of steel. Presented examples of computer aid in structural steel production showing a potential 
application possibility of this methodology to support the production of any group of engineering materials.
Originality/value: The prediction possibility of the material mechanical properties is valuable for manufacturers 
and constructors. It ensures the customers quality requirements and brings also measurable financial advantages.
Keywords: Materials science virtual laboratory; Artificial intelligence methods; Computational material science 
and mechanics; Iron alloys metallurgy
Reference to this paper should be given in the following way:
L.A. Dobrzański, R. Honysz, Artificial intelligence and virtual environment application for materials design 
methodology, Archives of Computational Materials Science and Surface Engineering 2/4 (2010) 201-212.

METHODS OF ANALYSIS AND MODELLING

http://www.archicmsse.org
http://www.archicmsse.org


202

L.A. Dobrzański, R. Honysz

Archives of Computational Materials Science and Surface Engineering

1. Introduction 
 

The increasing consumer demands about better quality of 
steel products forcing on manufacturers the usage of more 
precise manufacturing processes, which are based on the 
rigorous standards. To stay on the market, it is necessary to use 
computer systems supporting steel production or project 
managing on each stage of manufacturing. Increase in 
computing power, observed in recent years, favours the 
development of modern tools used for improving of product 
quality or for lowering its price. On special attention deserves, 
developed for several years, computer systems based on 
artificial intelligence methods and used to predict the 
mechanical properties of manufactured material. These systems 
absolving manufacturers from the multiple repetitions of 
expensive and long-term laboratory researches. The ability of 
structural steels mechanical properties obtainment is extremely 
valuable for manufacturers and designers, which are 
manufacturing or using steel elements. This allows fulfilling all 
customers’ requirements regarding the quality of supplied 
products. Modelling of steels mechanical properties is also 
associated with financial benefits, when expensive and time-
consuming researches are reduced to necessary minimum. 
Necessary to conduct is only the verification of computations 
[1-4]. 

This situation forced to develop a new computational model 
covering a wide range of input values, such as the high number of 
chemical elements, treatment conditions and geometrical 
dimensions, and relate them with the greatest possible number of 
mechanical properties. Suitable tools developed for modelling 
facilitation of these properties will enable more effective selection 
of steel production descriptors. It will also enable manufacturing 
of higher quality product, which are cheaper and are more 
optimized for customer needs. The development of computational 
methods and computer simulations resulted in replacement of the 
traditional laboratory in favour of the virtual laboratory. 
Development of virtual tools, which are simulating the 
investigative equipment and simulating the research methodology, 
can serve as a basis for combining aspects of laboratory research, 
simulation, measurement, and education. Application of these 
tools will allow the transfer of research and teaching procedures 
from real laboratory to virtual environment. This will increase the 
number of experiments conducted in virtual environment and 
thus, it will increase the efficiency of such researches. This will 
also allows the training of more professionals. This is not the 
work on real hardware. This is work with use of suitably designed 
simulators, namely those, in which the real research methodology 
is faithfully reproduces. Such simulators are very helpful, not only 
in industrial applications, but also in engineering education. Such 
researches were already preformed in the Department of Materials 
Processing Technology, Management and Information 
Technology in Materials Institute of Engineering Materials and 
Biomaterials, but this was not an integrated and comprehensive 
approach. Presented in this paper the new approach allows the 
methodical use of all available computational techniques, 
including the artificial intelligence tools and virtual environment 
[4-6]. 

2. A literature review 
 
2.1. The usage of IT tools in the design of 
material products 
 

The aim of new engineering materials design is to optimize 
their functional properties in technological, economic and 
environmental aspect. This usually applies to products made from 
these materials, which meet the strict usage requirements. Such 
design, usually computer aided, must be based on a thorough 
knowledge of relations (theoretical and empirical) between the 
chemical composition of the material, its structure, treatment 
conditions and mechanical properties. The main benefit is the 
ability to design a suitable material selection (or manufacturing) 
methodology for various industrial applications [7-9]. The idea of 
modelling is shown in Figure 1. 

 

 
 

Fig. 1. The idea of modelling 
 

Models shall be construed as a reflection of the system with 
use of logical relationships between variables describing them. 
Manipulation of these variables allows the analysis, how the 
model behaves in certain conditions [10]. Computational model is 
a simplified description of the relation between steels mechanical 
properties and conditions of its production. It ignores certain 
dependencies occurring in reality (considered by model 
developers to be less important) [8, 11-13]. 

Evaluation of simulation results obtained with use of 
developed computational model is based on comparison of all 
relevant variables model with the measured data [14-15]. It is 
recommended when developing a model to obtain a comparable 
level of the representation accuracy for most variables than the 
unusually precise terms of one variable (although important), and 
poorly to others [16-19]. 

Computational material models are collections of information 
on their properties and descriptors, expressed as a mathematical 
equation. Modelling is thus formalizing the description 
methodology of the given property, limited to set of properties 
shown by the physical model with use of formulas and 
mathematical relationships. This means that the physical model 
determines the form of a mathematical model. The mathematical 
model should clearly correspond to the physical model [20-23]. 

2.2. Numerical and mathematical models of 
structural steels 
 

There are many techniques of mathematical modelling using 
several different algorithms described in available literature. They 
are used among others to modelling the steels mechanical 
properties. Equally large is collection of articles and books related 
to properties’ modelling, from the simple dependence equations, 
through statistical analyses and on the methods of artificial 
intelligence finishing. However, there is no universal method of 
mechanical properties prediction. Developed and described in the 
literature models can be applied in very limited range of the 
chemical elements concentration or even for single steel grade 
with very narrow manufacturing conditions. Some part of all 
models does not take into consideration important conditions as 
e.g. the production focusing exclusively on the chemical 
composition on maximum four alloy additions [20-23]. 
 
 
2.3. Virtual laboratories methodology in 
scientific researches and education. 
 

Virtual laboratory is, located in virtual environment, set of 
simulators and trainers, whose main objective is to simulate the 
research methodology of investigative equipment located in real 
scientific laboratory. Additionally, user can find manual 
instructions of equipment usage, real and virtual experiments 
descriptions, training exercises possible to perform and many 
other materials supporting the cognitive processes of research 
methodology. Virtual laboratory is among other, training 
environment for staff and students who have just started work 
with the given device type. They can acquire basic skills and 
abilities to operate the device without worrying about damaging 
expensive equipment or causing danger to life or health of their 
own and other peoples present in the lab. Improper handling of 
simulated device ends only on the simulated malfunction or 
damages, visible only on the monitor screen. Then, user simply 
needs to reset the simulation to the initial state and repeat the 
experiment with the introduced correct parameters. Researches 
conducted in academic centres indicate that the ability to perform 
the experiment at home without supervisor has a positive effect on 
the student. He don't feel helpless and he doesn't make as many 
mistakes as a student familiar only with the theoretical 
descriptions of machines and having a first contact with the real 
device only in the classroom under the supervision of an 
instructor leading the subject [24-34].  
 
 

3. Course and scope of own work  
 
3.1. Research scope 
 

In order to develop a computer-aided method of steel 
mechanical properties modeling with use of artificial inteligence 
tools and virtual environment, materials research were carried out 
in order to build a database of experimental results, which was 
then used in the training process of artificial neural networks. This 
database was used to build a computational dependences model 

based on structural steels. To take full advantage of the developed 
computational model a materials science virtual laboratory was 
designed, developed and then used to predict the mechanical 
properties of the structural steels and to visualization of modelling 
results. It is placed in virtual reality an open science, research, 
simulation and teaching environment, which enable researches on 
selected mechanical properties of structural steels. Verification 
researches were performed to confirm the efficiency of virtual 
environment application for the purpose of modelling, simulation 
and prediction of mechanical properties of engineering materials 
on the example of structural steel on the basis of descriptors such 
as chemical composition, heat and plastic treatment conditions 
and shape and dimensions of the product. Developed software and 
obtained experimental results were used to work on the modelling 
of production conditions of non-alloy and alloy structural steel 
meeting the requirements specified by the designers of machinery 
and equipment. Possible are also classes on science research 
methodology and operation of research equipment for students 
and young engineers carried out by use of traditional and 
e-learning methods.  
 
 
3.2. Material and research methodology of 
structural steels mechanical properties 
 

Non-alloyed and alloyed structural steels were selected for 
examinations as example material. As the main criterion for 
selection of steel types was the carbon concentration, which for 
structural steel does not exceed 0.6% [35-36]. Further criteria for 
minimal and maximal chemical elements concentration, 
conditions of heat and plastic treatment were taken from [49] and 
[50]. The selection of mechanical properties, which were 
examinated was based on [51] and on analysis of the steel markets 
[41-45] and study the literature [7, 12, 37-40]. 

For the description of structural steel, six mechanical 
properties present in the metallurgical certificate have been 
selected. To describe the above properties set of descriptors 
characterizing steel in manufacturing process has been developed. 
It consists of chemical composition described by concentration of 
thirteen of the most common elements in steels, two technologies 
of heat treatment used in manufacturing, two technologies of 
plastic treatment and the geometric dimensions of the final 
product. Steel was manufactured in electric arc furnaces with 
devices for steel vacuum degassing (VAD). The material was 
supplied in the form of heat and plastic treated long rods. 

 
 

3.3. Description of own work methodology for 
prediction and modelling of examined 
structural steels mechanical properties 
 

Developed artificial neural networks were used to build the 
computational dependency model in structural steel. To build 
such model forty-nine artificial neural networks were trained. 
This model was built to verify the correctness of networks’ 
training process and to enable the effective usage of artificial 
neural networks for prediction and modelling of structural steels 
properties. The model describes the relationships, which exist 

1.  Introduction 2.  A literature review

2.1.  The usage of IT tools in the design  
of material products

http://www.archicmsse.org
http://www.archicmsse.org
http://www.archicmsse.org
http://www.archicmsse.org


203

Artificial intelligence and virtual environment application for materials design methodology

Volume 2  •  Issue 4  •  2010

1. Introduction 
 

The increasing consumer demands about better quality of 
steel products forcing on manufacturers the usage of more 
precise manufacturing processes, which are based on the 
rigorous standards. To stay on the market, it is necessary to use 
computer systems supporting steel production or project 
managing on each stage of manufacturing. Increase in 
computing power, observed in recent years, favours the 
development of modern tools used for improving of product 
quality or for lowering its price. On special attention deserves, 
developed for several years, computer systems based on 
artificial intelligence methods and used to predict the 
mechanical properties of manufactured material. These systems 
absolving manufacturers from the multiple repetitions of 
expensive and long-term laboratory researches. The ability of 
structural steels mechanical properties obtainment is extremely 
valuable for manufacturers and designers, which are 
manufacturing or using steel elements. This allows fulfilling all 
customers’ requirements regarding the quality of supplied 
products. Modelling of steels mechanical properties is also 
associated with financial benefits, when expensive and time-
consuming researches are reduced to necessary minimum. 
Necessary to conduct is only the verification of computations 
[1-4]. 

This situation forced to develop a new computational model 
covering a wide range of input values, such as the high number of 
chemical elements, treatment conditions and geometrical 
dimensions, and relate them with the greatest possible number of 
mechanical properties. Suitable tools developed for modelling 
facilitation of these properties will enable more effective selection 
of steel production descriptors. It will also enable manufacturing 
of higher quality product, which are cheaper and are more 
optimized for customer needs. The development of computational 
methods and computer simulations resulted in replacement of the 
traditional laboratory in favour of the virtual laboratory. 
Development of virtual tools, which are simulating the 
investigative equipment and simulating the research methodology, 
can serve as a basis for combining aspects of laboratory research, 
simulation, measurement, and education. Application of these 
tools will allow the transfer of research and teaching procedures 
from real laboratory to virtual environment. This will increase the 
number of experiments conducted in virtual environment and 
thus, it will increase the efficiency of such researches. This will 
also allows the training of more professionals. This is not the 
work on real hardware. This is work with use of suitably designed 
simulators, namely those, in which the real research methodology 
is faithfully reproduces. Such simulators are very helpful, not only 
in industrial applications, but also in engineering education. Such 
researches were already preformed in the Department of Materials 
Processing Technology, Management and Information 
Technology in Materials Institute of Engineering Materials and 
Biomaterials, but this was not an integrated and comprehensive 
approach. Presented in this paper the new approach allows the 
methodical use of all available computational techniques, 
including the artificial intelligence tools and virtual environment 
[4-6]. 

2. A literature review 
 
2.1. The usage of IT tools in the design of 
material products 
 

The aim of new engineering materials design is to optimize 
their functional properties in technological, economic and 
environmental aspect. This usually applies to products made from 
these materials, which meet the strict usage requirements. Such 
design, usually computer aided, must be based on a thorough 
knowledge of relations (theoretical and empirical) between the 
chemical composition of the material, its structure, treatment 
conditions and mechanical properties. The main benefit is the 
ability to design a suitable material selection (or manufacturing) 
methodology for various industrial applications [7-9]. The idea of 
modelling is shown in Figure 1. 

 

 
 

Fig. 1. The idea of modelling 
 

Models shall be construed as a reflection of the system with 
use of logical relationships between variables describing them. 
Manipulation of these variables allows the analysis, how the 
model behaves in certain conditions [10]. Computational model is 
a simplified description of the relation between steels mechanical 
properties and conditions of its production. It ignores certain 
dependencies occurring in reality (considered by model 
developers to be less important) [8, 11-13]. 

Evaluation of simulation results obtained with use of 
developed computational model is based on comparison of all 
relevant variables model with the measured data [14-15]. It is 
recommended when developing a model to obtain a comparable 
level of the representation accuracy for most variables than the 
unusually precise terms of one variable (although important), and 
poorly to others [16-19]. 

Computational material models are collections of information 
on their properties and descriptors, expressed as a mathematical 
equation. Modelling is thus formalizing the description 
methodology of the given property, limited to set of properties 
shown by the physical model with use of formulas and 
mathematical relationships. This means that the physical model 
determines the form of a mathematical model. The mathematical 
model should clearly correspond to the physical model [20-23]. 

2.2. Numerical and mathematical models of 
structural steels 
 

There are many techniques of mathematical modelling using 
several different algorithms described in available literature. They 
are used among others to modelling the steels mechanical 
properties. Equally large is collection of articles and books related 
to properties’ modelling, from the simple dependence equations, 
through statistical analyses and on the methods of artificial 
intelligence finishing. However, there is no universal method of 
mechanical properties prediction. Developed and described in the 
literature models can be applied in very limited range of the 
chemical elements concentration or even for single steel grade 
with very narrow manufacturing conditions. Some part of all 
models does not take into consideration important conditions as 
e.g. the production focusing exclusively on the chemical 
composition on maximum four alloy additions [20-23]. 
 
 
2.3. Virtual laboratories methodology in 
scientific researches and education. 
 

Virtual laboratory is, located in virtual environment, set of 
simulators and trainers, whose main objective is to simulate the 
research methodology of investigative equipment located in real 
scientific laboratory. Additionally, user can find manual 
instructions of equipment usage, real and virtual experiments 
descriptions, training exercises possible to perform and many 
other materials supporting the cognitive processes of research 
methodology. Virtual laboratory is among other, training 
environment for staff and students who have just started work 
with the given device type. They can acquire basic skills and 
abilities to operate the device without worrying about damaging 
expensive equipment or causing danger to life or health of their 
own and other peoples present in the lab. Improper handling of 
simulated device ends only on the simulated malfunction or 
damages, visible only on the monitor screen. Then, user simply 
needs to reset the simulation to the initial state and repeat the 
experiment with the introduced correct parameters. Researches 
conducted in academic centres indicate that the ability to perform 
the experiment at home without supervisor has a positive effect on 
the student. He don't feel helpless and he doesn't make as many 
mistakes as a student familiar only with the theoretical 
descriptions of machines and having a first contact with the real 
device only in the classroom under the supervision of an 
instructor leading the subject [24-34].  
 
 

3. Course and scope of own work  
 
3.1. Research scope 
 

In order to develop a computer-aided method of steel 
mechanical properties modeling with use of artificial inteligence 
tools and virtual environment, materials research were carried out 
in order to build a database of experimental results, which was 
then used in the training process of artificial neural networks. This 
database was used to build a computational dependences model 

based on structural steels. To take full advantage of the developed 
computational model a materials science virtual laboratory was 
designed, developed and then used to predict the mechanical 
properties of the structural steels and to visualization of modelling 
results. It is placed in virtual reality an open science, research, 
simulation and teaching environment, which enable researches on 
selected mechanical properties of structural steels. Verification 
researches were performed to confirm the efficiency of virtual 
environment application for the purpose of modelling, simulation 
and prediction of mechanical properties of engineering materials 
on the example of structural steel on the basis of descriptors such 
as chemical composition, heat and plastic treatment conditions 
and shape and dimensions of the product. Developed software and 
obtained experimental results were used to work on the modelling 
of production conditions of non-alloy and alloy structural steel 
meeting the requirements specified by the designers of machinery 
and equipment. Possible are also classes on science research 
methodology and operation of research equipment for students 
and young engineers carried out by use of traditional and 
e-learning methods.  
 
 
3.2. Material and research methodology of 
structural steels mechanical properties 
 

Non-alloyed and alloyed structural steels were selected for 
examinations as example material. As the main criterion for 
selection of steel types was the carbon concentration, which for 
structural steel does not exceed 0.6% [35-36]. Further criteria for 
minimal and maximal chemical elements concentration, 
conditions of heat and plastic treatment were taken from [49] and 
[50]. The selection of mechanical properties, which were 
examinated was based on [51] and on analysis of the steel markets 
[41-45] and study the literature [7, 12, 37-40]. 

For the description of structural steel, six mechanical 
properties present in the metallurgical certificate have been 
selected. To describe the above properties set of descriptors 
characterizing steel in manufacturing process has been developed. 
It consists of chemical composition described by concentration of 
thirteen of the most common elements in steels, two technologies 
of heat treatment used in manufacturing, two technologies of 
plastic treatment and the geometric dimensions of the final 
product. Steel was manufactured in electric arc furnaces with 
devices for steel vacuum degassing (VAD). The material was 
supplied in the form of heat and plastic treated long rods. 

 
 

3.3. Description of own work methodology for 
prediction and modelling of examined 
structural steels mechanical properties 
 

Developed artificial neural networks were used to build the 
computational dependency model in structural steel. To build 
such model forty-nine artificial neural networks were trained. 
This model was built to verify the correctness of networks’ 
training process and to enable the effective usage of artificial 
neural networks for prediction and modelling of structural steels 
properties. The model describes the relationships, which exist 

2.3.  Virtual laboratories methodology  
in scientific researches and education

2.2.  Numerical and mathematical models  
of structural steels

3.  Course and range of own work

3.1.  Research scope

3.2.  Material and research methodology  
of structural steels mechanical properties

3.3.  Description of own work methodology  
for prediction and modelling of examined 
structural steels mechanical properties

http://www.archicmsse.org
http://www.archicmsse.org
http://www.archicmsse.org
http://www.archicmsse.org


204

L.A. Dobrzański, R. Honysz

Archives of Computational Materials Science and Surface Engineering

between the conditions of steel production and its mechanical 
properties after manufacturing. After passing into models’ inputs 
the input parameters, which are: 

in case of straight modelling - chemical composition, head 
and plastic treatment conditions and geometrical dimensions, 
in case of reversed modelling - mechanical properties.  
These values are transferred into active block in the computation 

model. There, these values are distributed simultaneously on all 
artificial neural networks. Complete results, namely: 

in case of straight modelling - values or ranges of materials 
properties, 
in case of reversed modelling - concentrations of chemical 
elements, conditions of heat and plastic treatment or 
geometric dimensions,  

are transferred outside of the model through the user interface. 
This model was, in the next step, used to build a materials science 
virtual laboratory. In application part of the laboratory, developed 
model is used in direct determination of the descriptors or 
properties of examined steels. In the network part on the basis of 
achieved results, the virtual sample file is generated. This file is a 
representation of real material sample in virtual environment. To 
obtain the results from this file it should be examined with the use 
of investigative equipment simulators, like a real material sample.  

In order of experimental verification of the developed 
computational dependency model, a dozen types of non-alloy and 
alloy structural steels for different purposes were selected for 
examinations. Comparative studies were conducted using the 
material science virtual laboratory and real laboratory of the 
Institute of Engineering Materials And Biomaterials. A set of files 
describing the conditions of production and mechanical properties 
of selected species and corresponding to them real, material 
samples taken from the ready-made steel rods were developed. At 
model inputs, the production conditions of steel were inputted. 
Obtained computational results were compared with those 
obtained by real examinations of real samples of steel material. 

The results obtained during examination of real steel were 
introduced into the material science virtual laboratory. Results 
obtained in virtual environment were compared with results 
obtained in real investigations. Computations were conducted 
independently for all tested steel types. 

Based on the simulation data graphs showing the impact of 
the steel descriptor on the selected mechanical property of steel 
was developed. In the appropriate panel of NeuroLab application, 
production conditions among with the steels property with an 
appropriate range of variability were inputted.  

Operations performed in order to design new type of steel were 
made. Designed new steel should fulfil all strict requirements given 
by the customer in terms of production conditions and mechanical 
properties. New steel types were developed with use of material 
science virtual laboratory as material sample files, which are 
describing new types of steel meeting all requirements in virtual 
environment. In order to verify the correctness of performed 
simulations new steel types were manufactured in real world. The 
results obtained by modelling and simulation were compared with 
results obtained experimentally. 

Materials descriptors and mechanical properties values, which 
were used in the verification of the model in design of new steel 
types and in the researches of mechanical properties of structural 
steels, were produced by another production company. This data 
was not used at any stage in the process of building the model. 

4. Analysis of own work results 
 
4.1. Results of own work for mechanical 
properties examination of non-alloy and alloy 
structural steels 
 

The total number of examined melts was 37970. Accepted 
ranges of investigated steels chemical elements are shown 
graphically in Fig. 2a. Ranges of heat and plastic treatment 
conditions of examined structural steels are presented in chart 
Fig. 2b for quenched and tempered steel and in Fig. 2c for 
normalized steel. Materials researches have been partially realised 
in the laboratories of the Department of Materials Processing 
Technology, Management and Information Technology in 
Institute of Engineering Materials and Biomaterials, and partly in 
a research laboratories "Batory" in Chorzów, Poland [46]. 

Static steel tensile examinations has been done to determine the 
yield strength (R0.2), tensile strength (Rm), relative elongation (A5) 
and relative area reduction (Z). Standard round sample with 
diameter φ10 mm and length 50 mm were used. The results were 
divided according to the type of heat and plastic treatment (Fig. 3). 
 
4.2. The results of own work for development 
of structural steel integrated computational 
model using artificial neural networks 
 

In order to build the model, set of vectors are divided into four 
subsets. It was decided, that for each individual property, whose 
value should be estimated, to create a separate neural networks. 
For properties whose values in steel certificates are given in a 
range, two networks were trained to provide the estimation for the 
minimum and maximum values separately. The best results were 
obtained with artificial neural networks of multilayer perceptron 
structure with one or two hidden layers. Network types for each 
property along with the numbers of neurons and the parameters 
used in quality assessment for a set of test are shown in Table 1. 
In all cases, trained artificial neural network reached a value of 
the correlation coefficient above 0.9 and the relatively low values 
of deviation ratio. That is a very good representation of the state 
space. On special attention deserves networks providing 
prediction of the yield strength (R0.2) and the tensile strength (Rm). 
The correlation coefficient above 0.98 and the deviation ratio of 
less than 0.2 indicate a very good network quality.  

The developed artificial neural networks were the basis for 
developing a computational model of structural steel dependences. 
Forty-eight of the developed artificial neural networks are grouped 
in four blocks with twelve networks each for steels after quenching 
and tempering, normalising, forging and rolling. Appropriate block 
is activated depending on the type of heat and plastic treatment. 
Each block contains a set of artificial neural networks necessary to 
carry out the prediction of mechanical properties. A separate 
network is responsible for steel's type classifications. The examined 
steel's concentrations of chemical elements are compared with the 
chemical concentration of base steels and as a result, a base steel 
type, which the chemical composition is most similar to examined 
steel's chemical composition, is given.  

a) b) c)

 
 

Fig. 2. Ranges of a) chemical elements concentration, b) temperature of heat treatment, c) time of heat treatment in investigated structural steels 
 

a) b) c) d) 

 
e) f) g) h) 

 
Fig. 3. The ranges of obtained test results: a) yield strength R0,2, b) tensile strength Rm, c) relative elongation A5, d) relative area reduction Z, 
e) impact strength (KV), f) impact strength (KCU2) g) Brinell hardness HB, h) Vickers hardness HV 

 
4.3. The results of own work for development 
of software for integrated modelling and 
prediction of mechanical properties 
 

The training of artificial neural networks itself does not make 
possible the effective prediction of structural steels mechanical 
parameters. Statistica Neural Network is superb application for 
training of such networks. However, it is difficult to apply this 
system as effective environment applicable for properties 
modelling Necessary becomes the creation of new system, which 
will: 

 use of intuitive graphic user interface,  
 protect the user form processing of incorrect data, 
 use several neural networks simultaneously in the modelling 

process, 
 make possible the graphic representation of computed results 

as figures or graphs, 
 export the modelling results as raw data or as report, 
 allow to save all data as the file on the disc for later use, 
 make accessible the necessary documentation, which will 

enable the beginning of the work to the user and facilitating 
her guidance. 
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achieved results, the virtual sample file is generated. This file is a 
representation of real material sample in virtual environment. To 
obtain the results from this file it should be examined with the use 
of investigative equipment simulators, like a real material sample.  

In order of experimental verification of the developed 
computational dependency model, a dozen types of non-alloy and 
alloy structural steels for different purposes were selected for 
examinations. Comparative studies were conducted using the 
material science virtual laboratory and real laboratory of the 
Institute of Engineering Materials And Biomaterials. A set of files 
describing the conditions of production and mechanical properties 
of selected species and corresponding to them real, material 
samples taken from the ready-made steel rods were developed. At 
model inputs, the production conditions of steel were inputted. 
Obtained computational results were compared with those 
obtained by real examinations of real samples of steel material. 

The results obtained during examination of real steel were 
introduced into the material science virtual laboratory. Results 
obtained in virtual environment were compared with results 
obtained in real investigations. Computations were conducted 
independently for all tested steel types. 

Based on the simulation data graphs showing the impact of 
the steel descriptor on the selected mechanical property of steel 
was developed. In the appropriate panel of NeuroLab application, 
production conditions among with the steels property with an 
appropriate range of variability were inputted.  

Operations performed in order to design new type of steel were 
made. Designed new steel should fulfil all strict requirements given 
by the customer in terms of production conditions and mechanical 
properties. New steel types were developed with use of material 
science virtual laboratory as material sample files, which are 
describing new types of steel meeting all requirements in virtual 
environment. In order to verify the correctness of performed 
simulations new steel types were manufactured in real world. The 
results obtained by modelling and simulation were compared with 
results obtained experimentally. 

Materials descriptors and mechanical properties values, which 
were used in the verification of the model in design of new steel 
types and in the researches of mechanical properties of structural 
steels, were produced by another production company. This data 
was not used at any stage in the process of building the model. 

4. Analysis of own work results 
 
4.1. Results of own work for mechanical 
properties examination of non-alloy and alloy 
structural steels 
 

The total number of examined melts was 37970. Accepted 
ranges of investigated steels chemical elements are shown 
graphically in Fig. 2a. Ranges of heat and plastic treatment 
conditions of examined structural steels are presented in chart 
Fig. 2b for quenched and tempered steel and in Fig. 2c for 
normalized steel. Materials researches have been partially realised 
in the laboratories of the Department of Materials Processing 
Technology, Management and Information Technology in 
Institute of Engineering Materials and Biomaterials, and partly in 
a research laboratories "Batory" in Chorzów, Poland [46]. 

Static steel tensile examinations has been done to determine the 
yield strength (R0.2), tensile strength (Rm), relative elongation (A5) 
and relative area reduction (Z). Standard round sample with 
diameter φ10 mm and length 50 mm were used. The results were 
divided according to the type of heat and plastic treatment (Fig. 3). 
 
4.2. The results of own work for development 
of structural steel integrated computational 
model using artificial neural networks 
 

In order to build the model, set of vectors are divided into four 
subsets. It was decided, that for each individual property, whose 
value should be estimated, to create a separate neural networks. 
For properties whose values in steel certificates are given in a 
range, two networks were trained to provide the estimation for the 
minimum and maximum values separately. The best results were 
obtained with artificial neural networks of multilayer perceptron 
structure with one or two hidden layers. Network types for each 
property along with the numbers of neurons and the parameters 
used in quality assessment for a set of test are shown in Table 1. 
In all cases, trained artificial neural network reached a value of 
the correlation coefficient above 0.9 and the relatively low values 
of deviation ratio. That is a very good representation of the state 
space. On special attention deserves networks providing 
prediction of the yield strength (R0.2) and the tensile strength (Rm). 
The correlation coefficient above 0.98 and the deviation ratio of 
less than 0.2 indicate a very good network quality.  

The developed artificial neural networks were the basis for 
developing a computational model of structural steel dependences. 
Forty-eight of the developed artificial neural networks are grouped 
in four blocks with twelve networks each for steels after quenching 
and tempering, normalising, forging and rolling. Appropriate block 
is activated depending on the type of heat and plastic treatment. 
Each block contains a set of artificial neural networks necessary to 
carry out the prediction of mechanical properties. A separate 
network is responsible for steel's type classifications. The examined 
steel's concentrations of chemical elements are compared with the 
chemical concentration of base steels and as a result, a base steel 
type, which the chemical composition is most similar to examined 
steel's chemical composition, is given.  

a) b) c)

 
 

Fig. 2. Ranges of a) chemical elements concentration, b) temperature of heat treatment, c) time of heat treatment in investigated structural steels 
 

a) b) c) d) 

 
e) f) g) h) 

 
Fig. 3. The ranges of obtained test results: a) yield strength R0,2, b) tensile strength Rm, c) relative elongation A5, d) relative area reduction Z, 
e) impact strength (KV), f) impact strength (KCU2) g) Brinell hardness HB, h) Vickers hardness HV 

 
4.3. The results of own work for development 
of software for integrated modelling and 
prediction of mechanical properties 
 

The training of artificial neural networks itself does not make 
possible the effective prediction of structural steels mechanical 
parameters. Statistica Neural Network is superb application for 
training of such networks. However, it is difficult to apply this 
system as effective environment applicable for properties 
modelling Necessary becomes the creation of new system, which 
will: 

 use of intuitive graphic user interface,  
 protect the user form processing of incorrect data, 
 use several neural networks simultaneously in the modelling 

process, 
 make possible the graphic representation of computed results 

as figures or graphs, 
 export the modelling results as raw data or as report, 
 allow to save all data as the file on the disc for later use, 
 make accessible the necessary documentation, which will 

enable the beginning of the work to the user and facilitating 
her guidance. 

4.3.  The results of own work for development  
of software for integrated modelling and pre-
diction of mechanical properties
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Table 1. 
Parameters of computed neural networks for steels after quenching, tempering, normalising, rolling and forging processes 

properties of forged steel 
quenched and tempered normalised 

network 
architecture 

average 
absolute 

error 

standard 
deviation 

ratio 

Pearson 
corella-

tion 

network 
architecture 

average 
absolute 

error 

standard 
deviation 

ratio 

Pearson 
corella-

tion 
yield strength (R0.2) 22:29-9-1:1 26.44 0.20 0.98 18:18-5-1:1 18.14 0.18 0.98 
tensile strength (Rm) 22:26-16-13-1:1 23.60 0.19 0.98 18:18-4-1:1 16.02 0.19 0.98 

relative elongation (A5) 17:19-7-1:1 1.26 0.36 0.93 14:14-6-1:1 1.32 0.36 0.93 
relative area reduction (Z) 22:26-13-10-1:1 1.7 0.33 0.94 16:16-10-1:1 1.89 0.30 0.95 

impact strength (KV) (min) 16:20-8-1:1 16.42 0.34 0.93 15:15-6-1:1 15.91 0.35 0.93 
impact strength (KV) (max) 24:28-14-1:1 16.64 0.35 0.93 18:18-8-1:1 19.45 0.34 0.93 

impact strength (KCU2) (min) 12:14-7-1:1 10.65 0.35 0.93 14:14-9-1:1 14.62 0.30 0.95 
impact strength (KCU2) (max) 15:17-9-1:1 16.72 0.35 0.93 13:13-8-1:1 14.07 0.24 0.97 

hardness (HB) (min) 18:22-7-1:1 9.80 0.27 0.96 11:11-5-1:1 4.74 0.29 0.95 
hardness (HB) (max) 12:16-8-1:1 11.77 0.31 0.94 15:15-6-1:1 6.03 0.33 0.94 
hardness (HV) (min) 24:28-8-1:1 8.71 0.24 0.97 17:17-7-1:1 6.50 0.32 0.94 
hardness (HV) (max) 15:19-8-1:1 9.17 0.22 0.97 16:16-4-1:1 6.23 0.33 0.93 

properties of rolled steel 
quenched and tempered normalised 

network 
architecture 

average 
absolute 

error 

standard 
deviation 

ratio 

Pearson 
corella-

tion 

network 
architecture 

average 
absolute 

error 

standard 
deviation 

ratio 

Pearson 
corella-

tion 
yield strength (R0.2) 21:23-26-13-1:1 35.11 0.18 0.98 17:17-9-5-1:1 7.13 0.20 0.98 
tensile strength (Rm) 21:23-7-7:1 25.48 0.16 0.98 17:17-12-6-1:1 13.15 0.18 0.98 

relative elongation (A5) 19:21-17-11-1:1 0.97 0.38 0.92 14:14-6-1:1 1.05 0.30 0.95 
relative area reduction (Z) 17:19-13-1:1 1.41 0.35 0.93 13:13-4-1:1 1.19 0.31 0.95 

impact strength (KV) (min) 9:9-6-1:1 8.86 0.38 0.92 10:10-5-1:1 20.47 0.41 0.91 
impact strength (KV) (max) 19:21-7-1:1 8.48 0.33 0.94 16:16-6-1:1 19.08 0.37 0.92 

impact strength (KCU2) (min) 17:19-9-1:1 4.91 0.20 0.97 14:14-8-1:1 10.39 0.35 0.93 
impact strength (KCU2) (max) 18:20-8-1:1 6.57 0.26 0.96 16:16-11-1:1 12.16 0.38 0.92 

hardness (HB) (min) 13:13-8-1:1 8.29 0.29 0.98 8:8-5-1:1 5.84 0.33 0.94 
hardness (HB) (max) 10:12-6-1:1 8.95 0.22 0.97 12:12-8-1:1 4.76 0.28 0.92 
hardness (HV) (min) 16:18-12-4-1:1 12.40 0.21 0.97 18:18-8-1:1 5.52 0.33 0.94 
hardness (HV) (max) 19:19-12-8-1:1 13.94 0.27 0.96 10:10-9-1:1 6.01 0.31 0.94 

 
To fulfil all requirements a material science virtual laboratory has 

been developed. It is located in the virtual reality an open, academic, 
research, simulation and teaching environment, which makes possible 
researches on selected mechanical properties of structural steels. 

 
 

5. The materials science virtual 
laboratory project 
 
5.1. The application part of the material 
science virtual laboratory 
 

The laboratory was divided into two parts with different 
functionality. The first one is application "NeuroLab" which use 
artificial intelligence algorithms to predict the mechanical 
properties of non-alloy and alloy structural steel. It is an 
application virtual laboratory, in which on the basis of the input 
steels manufacturing conditions is possible to determine its 
mechanical properties without the need for real examinations. 
Also possible is the reversed inference, namely on the basis of 

mechanical properties values is possible to determine steel's 
production conditions. The application interface consists of four 
cards. Input parameters card (Fig. 4a) is used for data input about 
investigated steel. Predicted results card (Fig. 4b) is used for 
computation results presentation. Relation chart card (Fig. 4c) is 
used to generate dependency graphs between the mechanical 
properties of steel and the production conditions used for their 
estimation. It is possible to examine the influence of any 
condition present in input parameters card onto any mechanical 
property present in predicted results card, when the rest of 
descriptors remains unchanged. Neural network description card 
(Fig. 4d) presents information about the neural networks that were 
used for the construction of the structural steel dependency model. 
This model is applied in this software. 

The results of computational experiments are presented in a 
openly form in the application window or printed as the 
investigation protocol of the mechanical and technological 
properties as print the test protocol of mechanical and 
technological in accordance with [51]. Relations between 
production conditions and mechanical properties are generated in 
the form of graphs in a separate window.  

a)         b) 

   
c)         d) 

   
 
Fig. 4. Application materials science virtual laboratory  - NeuroLab 1.1 a) input parameters card, b) predicted results card, c) relation 
charts card, d) neural networks description card 
 

a) b) c) d) 

 
e) f) g) h) 

 
Fig. 5. Simulation of laboratory equipment installed in network material science virtual laboratory, a) light microscopy, b) laser scanning 
confocal microscope, c) universal hardness tester, d) scanning electron microscope, e) surface heater, f) tensile machine, g) Charpy 
pendulum machine, h) samples file generation panel  
 
5.2. The network part of the material science 
virtual laboratory. 
 

Network part of materials science virtual laboratory [47-48] is 
a tool with extended functionality in relation to the NeuroLab 
application. This is a network laboratory placed in the Internet on 
e-Learning Platform of the Institute of Engineering Materials and 
Biomaterials. This same computational model of structural steel’s 

dependencies is applied in network part, so it is possible to 
perform the same examination range, which can be performed 
using the application part of virtual laboratory. However, there are 
differences in examination methodology. Opposite to the 
application part of the laboratory, in network part user do not 
receive the results of examinations in the open form. The 
modelling results are stored in a file, which is a virtual 
representation of real steel sample in virtual world. In order to 
obtain the results this file should be placed in machine simulators. 

5.  The materials science virtual  
laboratory project

5.1.  The application part of the material science 
virtual laboratory
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Table 1. 
Parameters of computed neural networks for steels after quenching, tempering, normalising, rolling and forging processes 

properties of forged steel 
quenched and tempered normalised 

network 
architecture 

average 
absolute 

error 

standard 
deviation 

ratio 

Pearson 
corella-

tion 

network 
architecture 

average 
absolute 

error 

standard 
deviation 

ratio 

Pearson 
corella-

tion 
yield strength (R0.2) 22:29-9-1:1 26.44 0.20 0.98 18:18-5-1:1 18.14 0.18 0.98 
tensile strength (Rm) 22:26-16-13-1:1 23.60 0.19 0.98 18:18-4-1:1 16.02 0.19 0.98 

relative elongation (A5) 17:19-7-1:1 1.26 0.36 0.93 14:14-6-1:1 1.32 0.36 0.93 
relative area reduction (Z) 22:26-13-10-1:1 1.7 0.33 0.94 16:16-10-1:1 1.89 0.30 0.95 

impact strength (KV) (min) 16:20-8-1:1 16.42 0.34 0.93 15:15-6-1:1 15.91 0.35 0.93 
impact strength (KV) (max) 24:28-14-1:1 16.64 0.35 0.93 18:18-8-1:1 19.45 0.34 0.93 

impact strength (KCU2) (min) 12:14-7-1:1 10.65 0.35 0.93 14:14-9-1:1 14.62 0.30 0.95 
impact strength (KCU2) (max) 15:17-9-1:1 16.72 0.35 0.93 13:13-8-1:1 14.07 0.24 0.97 

hardness (HB) (min) 18:22-7-1:1 9.80 0.27 0.96 11:11-5-1:1 4.74 0.29 0.95 
hardness (HB) (max) 12:16-8-1:1 11.77 0.31 0.94 15:15-6-1:1 6.03 0.33 0.94 
hardness (HV) (min) 24:28-8-1:1 8.71 0.24 0.97 17:17-7-1:1 6.50 0.32 0.94 
hardness (HV) (max) 15:19-8-1:1 9.17 0.22 0.97 16:16-4-1:1 6.23 0.33 0.93 

properties of rolled steel 
quenched and tempered normalised 

network 
architecture 

average 
absolute 

error 

standard 
deviation 

ratio 

Pearson 
corella-

tion 

network 
architecture 

average 
absolute 

error 

standard 
deviation 

ratio 

Pearson 
corella-

tion 
yield strength (R0.2) 21:23-26-13-1:1 35.11 0.18 0.98 17:17-9-5-1:1 7.13 0.20 0.98 
tensile strength (Rm) 21:23-7-7:1 25.48 0.16 0.98 17:17-12-6-1:1 13.15 0.18 0.98 

relative elongation (A5) 19:21-17-11-1:1 0.97 0.38 0.92 14:14-6-1:1 1.05 0.30 0.95 
relative area reduction (Z) 17:19-13-1:1 1.41 0.35 0.93 13:13-4-1:1 1.19 0.31 0.95 

impact strength (KV) (min) 9:9-6-1:1 8.86 0.38 0.92 10:10-5-1:1 20.47 0.41 0.91 
impact strength (KV) (max) 19:21-7-1:1 8.48 0.33 0.94 16:16-6-1:1 19.08 0.37 0.92 

impact strength (KCU2) (min) 17:19-9-1:1 4.91 0.20 0.97 14:14-8-1:1 10.39 0.35 0.93 
impact strength (KCU2) (max) 18:20-8-1:1 6.57 0.26 0.96 16:16-11-1:1 12.16 0.38 0.92 

hardness (HB) (min) 13:13-8-1:1 8.29 0.29 0.98 8:8-5-1:1 5.84 0.33 0.94 
hardness (HB) (max) 10:12-6-1:1 8.95 0.22 0.97 12:12-8-1:1 4.76 0.28 0.92 
hardness (HV) (min) 16:18-12-4-1:1 12.40 0.21 0.97 18:18-8-1:1 5.52 0.33 0.94 
hardness (HV) (max) 19:19-12-8-1:1 13.94 0.27 0.96 10:10-9-1:1 6.01 0.31 0.94 

 
To fulfil all requirements a material science virtual laboratory has 

been developed. It is located in the virtual reality an open, academic, 
research, simulation and teaching environment, which makes possible 
researches on selected mechanical properties of structural steels. 

 
 

5. The materials science virtual 
laboratory project 
 
5.1. The application part of the material 
science virtual laboratory 
 

The laboratory was divided into two parts with different 
functionality. The first one is application "NeuroLab" which use 
artificial intelligence algorithms to predict the mechanical 
properties of non-alloy and alloy structural steel. It is an 
application virtual laboratory, in which on the basis of the input 
steels manufacturing conditions is possible to determine its 
mechanical properties without the need for real examinations. 
Also possible is the reversed inference, namely on the basis of 

mechanical properties values is possible to determine steel's 
production conditions. The application interface consists of four 
cards. Input parameters card (Fig. 4a) is used for data input about 
investigated steel. Predicted results card (Fig. 4b) is used for 
computation results presentation. Relation chart card (Fig. 4c) is 
used to generate dependency graphs between the mechanical 
properties of steel and the production conditions used for their 
estimation. It is possible to examine the influence of any 
condition present in input parameters card onto any mechanical 
property present in predicted results card, when the rest of 
descriptors remains unchanged. Neural network description card 
(Fig. 4d) presents information about the neural networks that were 
used for the construction of the structural steel dependency model. 
This model is applied in this software. 

The results of computational experiments are presented in a 
openly form in the application window or printed as the 
investigation protocol of the mechanical and technological 
properties as print the test protocol of mechanical and 
technological in accordance with [51]. Relations between 
production conditions and mechanical properties are generated in 
the form of graphs in a separate window.  

a)         b) 

   
c)         d) 

   
 
Fig. 4. Application materials science virtual laboratory  - NeuroLab 1.1 a) input parameters card, b) predicted results card, c) relation 
charts card, d) neural networks description card 
 

a) b) c) d) 

 
e) f) g) h) 

 
Fig. 5. Simulation of laboratory equipment installed in network material science virtual laboratory, a) light microscopy, b) laser scanning 
confocal microscope, c) universal hardness tester, d) scanning electron microscope, e) surface heater, f) tensile machine, g) Charpy 
pendulum machine, h) samples file generation panel  
 
5.2. The network part of the material science 
virtual laboratory. 
 

Network part of materials science virtual laboratory [47-48] is 
a tool with extended functionality in relation to the NeuroLab 
application. This is a network laboratory placed in the Internet on 
e-Learning Platform of the Institute of Engineering Materials and 
Biomaterials. This same computational model of structural steel’s 

dependencies is applied in network part, so it is possible to 
perform the same examination range, which can be performed 
using the application part of virtual laboratory. However, there are 
differences in examination methodology. Opposite to the 
application part of the laboratory, in network part user do not 
receive the results of examinations in the open form. The 
modelling results are stored in a file, which is a virtual 
representation of real steel sample in virtual world. In order to 
obtain the results this file should be placed in machine simulators. 

5.2.  The network part of the material science virtual 
laboratory
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Examination of created material model mechanical properties and 
material structures consists of exact research equipment 
representation with an exact reproduction of the device’s research 
methodology. Only after the examination performed in the virtual 
environment, user gets the property examination result (or an 
error message when the examination failed because of an error). 
Figure 5 presents simulations of the investigative equipment 
available in the laboratory along with the panel for generating 
files representing material samples. 

The research methodology with use of simulations is exactly 
the same as the real device. All the manipulators, such as buttons or 
knobs are placed in the simulation at the appropriate places, like in 
a real machine. The functionality of the real machine is mapped in 
the simulations without any changes and modifications. 

 
 

6. The verification of experimental and 
virtual influence examinations of 
chemical concentration on the 
mechanical properties of structural 
steels performed with use of materials 
science virtual laboratory 
 
 

In order to experimental verification of computational model 
successively three aspects has been emerged. The first describes the 
experimental verifications aimed in the correctness verification of 
the computational model developed in order to answer the question 
whether it is possible to perform virtual material examinations 
exclusively in the virtual environment. This was followed by virtual 
materials researches aimed to determine the influence, which the 
structural steel’s mechanical properties have on steels descriptors, 
such as the concentration of chemical elements, the conditions of 
heat and plastic treatment and geometrical dimensions. The last of 
these activities was to design a chemical composition and heat 
treatment conditions of two hypothetical structural steels to meet 
the client's requirements about values of mechanical properties. 

For verification purposes, an experimental set of vectors 
describing the material descriptors and steel's mechanical properties 
has been developed. These vectors describe each of the 135 types of 
examined steel. To exclude the possibility of adjusting the artificial 
neural network only to the products of one manufacturer's material 
vectors, verification samples were collected from a different 
manufacturer. Samples, produced from these types of steel, were 
examined in order to obtain verification vectors. To minimize 
differences between training and validation data, material 
researches has been performed in the same way and using the same 
equipment, that were used in the main researches. In addition, the 
vectors used for comparative researches were constructed in the 
same way as the vectors used for training of artificial neural 
network used in the calculation model of dependences in to 
structural steel. Vectors, in which values of material descriptors or 
mechanical properties went beyond the accepted ranges for the 
vectors used for construction of artificial neural networks, were 
rejected. The results obtained by virtual examination have been 
compared with those obtained experimentally in a real laboratory. 

As example, the influence analysis of the admixtures 
concentration on the mechanical properties was conducted. Three 
types of steel were selected for investigations. There are non-alloy 
structural steels for general use described in [52]. Steel signatures 
and chemical compositions are introduced in Table 2. The material 
was delivered as forged, normalised round rods. Material 
descriptors, such as chemical composition, heat treatment, plastic 
treatment and geometric parameters were inputted to material 
science virtual laboratory. All data were saved in files, which are 
representation for real material samples in the virtual world.  

The mechanical properties estimation was performed for every 
single virtual sample. Results obtained with use of this method were 
compared with results obtained by use of real material 
investigations. All are introduced in Table 3. It was found, that all 
estimated results are correct for all examined steel samples, because 
all three steel species were recognised correctly, and differences 
among predicted and measured values of mechanical properties are 
very small and predicted results did not exceed the neural network 
tolerance values for corresponding property. 

The next stage of investigative work was the analysis how big is 
the influence of the admixtures concentration on steels mechanical 
properties. The influence graphs were generated with use of 
NeuroLab among estimated properties and the concentration of 
admixtures. Influence graphs are presented in Figs. 6-11.  

 
Table 2.  
Chemical composition of examined non-alloy steels  

steel signature chemical elements concentration normalising parameters shape C Mn Si P S Cr Ni Al temp. [ C] time [min] cooling medium
S235J2G3 0.16 0.81 0.22 0.01 0.02 0.13 0.09 0.04 880 60 air 100 

S275JR 0.18 0.7 0.31 0.01 0.01 0.11 0.13 0.02 880 60 air 100 
S355K2G3 0.20 1.12 0.35 0.04 0.02 0.01 0.04 0.04 880 60 air 100 

 
Table 3.  
Comparison between measured and predicted mechanical properties of examined non-alloy steels 

property measured predicted measured predicted measured predicted
Material S235J2G3 S235J2G3 S275JR S275JR S355K2G3 S355K2G3

R0,2 [MPa] 307 306 302 304 362 379
Rm [MPa] 461 467 506 502 573 596

A5 [%] 33.8 34.0 35.5 33.8 31.0 27.6
Z [%] 64.1 65.7 59.9 62.3 52.0 56.0
KV [J] 137-143 108-143 124-142 111-126 102-139 106-113

HB 112-129 124-134 143-146 138-146 149-159 155-162

 
 

Fig. 6. Influence of manganese and silicon concentration on selected mechanical properties of S235J2G3 steel 

 

 

 
Fig. 7. Influence of phosphorus and sulphur concentration on selected mechanical properties of S235J2G3 steel 

 

 
 

Fig. 8. Influence of manganese and silicon concentration on selected mechanical properties of S275JR steel 

6.  The verification of experimental  
and virtual influence examinations  
of chemical concentration and  
conditions of heat and plastic  
treatment on the mechanical  
properties of structural steels  
performed with use of materials  
science virtual laboratory
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Examination of created material model mechanical properties and 
material structures consists of exact research equipment 
representation with an exact reproduction of the device’s research 
methodology. Only after the examination performed in the virtual 
environment, user gets the property examination result (or an 
error message when the examination failed because of an error). 
Figure 5 presents simulations of the investigative equipment 
available in the laboratory along with the panel for generating 
files representing material samples. 

The research methodology with use of simulations is exactly 
the same as the real device. All the manipulators, such as buttons or 
knobs are placed in the simulation at the appropriate places, like in 
a real machine. The functionality of the real machine is mapped in 
the simulations without any changes and modifications. 

 
 

6. The verification of experimental and 
virtual influence examinations of 
chemical concentration on the 
mechanical properties of structural 
steels performed with use of materials 
science virtual laboratory 
 
 

In order to experimental verification of computational model 
successively three aspects has been emerged. The first describes the 
experimental verifications aimed in the correctness verification of 
the computational model developed in order to answer the question 
whether it is possible to perform virtual material examinations 
exclusively in the virtual environment. This was followed by virtual 
materials researches aimed to determine the influence, which the 
structural steel’s mechanical properties have on steels descriptors, 
such as the concentration of chemical elements, the conditions of 
heat and plastic treatment and geometrical dimensions. The last of 
these activities was to design a chemical composition and heat 
treatment conditions of two hypothetical structural steels to meet 
the client's requirements about values of mechanical properties. 

For verification purposes, an experimental set of vectors 
describing the material descriptors and steel's mechanical properties 
has been developed. These vectors describe each of the 135 types of 
examined steel. To exclude the possibility of adjusting the artificial 
neural network only to the products of one manufacturer's material 
vectors, verification samples were collected from a different 
manufacturer. Samples, produced from these types of steel, were 
examined in order to obtain verification vectors. To minimize 
differences between training and validation data, material 
researches has been performed in the same way and using the same 
equipment, that were used in the main researches. In addition, the 
vectors used for comparative researches were constructed in the 
same way as the vectors used for training of artificial neural 
network used in the calculation model of dependences in to 
structural steel. Vectors, in which values of material descriptors or 
mechanical properties went beyond the accepted ranges for the 
vectors used for construction of artificial neural networks, were 
rejected. The results obtained by virtual examination have been 
compared with those obtained experimentally in a real laboratory. 

As example, the influence analysis of the admixtures 
concentration on the mechanical properties was conducted. Three 
types of steel were selected for investigations. There are non-alloy 
structural steels for general use described in [52]. Steel signatures 
and chemical compositions are introduced in Table 2. The material 
was delivered as forged, normalised round rods. Material 
descriptors, such as chemical composition, heat treatment, plastic 
treatment and geometric parameters were inputted to material 
science virtual laboratory. All data were saved in files, which are 
representation for real material samples in the virtual world.  

The mechanical properties estimation was performed for every 
single virtual sample. Results obtained with use of this method were 
compared with results obtained by use of real material 
investigations. All are introduced in Table 3. It was found, that all 
estimated results are correct for all examined steel samples, because 
all three steel species were recognised correctly, and differences 
among predicted and measured values of mechanical properties are 
very small and predicted results did not exceed the neural network 
tolerance values for corresponding property. 

The next stage of investigative work was the analysis how big is 
the influence of the admixtures concentration on steels mechanical 
properties. The influence graphs were generated with use of 
NeuroLab among estimated properties and the concentration of 
admixtures. Influence graphs are presented in Figs. 6-11.  

 
Table 2.  
Chemical composition of examined non-alloy steels  

steel signature chemical elements concentration normalising parameters shape C Mn Si P S Cr Ni Al temp. [ C] time [min] cooling medium
S235J2G3 0.16 0.81 0.22 0.01 0.02 0.13 0.09 0.04 880 60 air 100 

S275JR 0.18 0.7 0.31 0.01 0.01 0.11 0.13 0.02 880 60 air 100 
S355K2G3 0.20 1.12 0.35 0.04 0.02 0.01 0.04 0.04 880 60 air 100 

 
Table 3.  
Comparison between measured and predicted mechanical properties of examined non-alloy steels 

property measured predicted measured predicted measured predicted
Material S235J2G3 S235J2G3 S275JR S275JR S355K2G3 S355K2G3

R0,2 [MPa] 307 306 302 304 362 379
Rm [MPa] 461 467 506 502 573 596

A5 [%] 33.8 34.0 35.5 33.8 31.0 27.6
Z [%] 64.1 65.7 59.9 62.3 52.0 56.0
KV [J] 137-143 108-143 124-142 111-126 102-139 106-113

HB 112-129 124-134 143-146 138-146 149-159 155-162

 
 

Fig. 6. Influence of manganese and silicon concentration on selected mechanical properties of S235J2G3 steel 

 

 

 
Fig. 7. Influence of phosphorus and sulphur concentration on selected mechanical properties of S235J2G3 steel 

 

 
 

Fig. 8. Influence of manganese and silicon concentration on selected mechanical properties of S275JR steel 
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Fig. 9. Influence of phosphorus and sulphur concentration on selected mechanical properties of S275JR steel 

 

 
 

Fig. 10. Influence of manganese and silicon concentration on selected mechanical properties of S355K2G3 steel 

 

 

 
Fig. 11. Influence of phosphorus and sulphur concentration on selected mechanical properties of S355K2G3 steel 

 

Summary 
 

On the basis of experimental results obtained in the virtual and 
real examinations of structural steels mechanical properties it has 
been proved, that the selection of chemical composition, heat and 
plastic treatment conditions and geometrical dimensions of 
structural steels, to ensure the required mechanical properties 
specified by the designer of machinery and equipment, as the basis 
for the design of the material elements manufactured from these 
steels, can be obtain by using a computational model developed 
using the artificial intelligence tools and virtual environment 
providing the impact study of these factors on the mechanical 
properties of steel only in computing environment. Results, 
obtained during virtual experiments, indicates on very good 
compatibility of the model with the data obtained experimentally in 
real laboratory and demonstrate the effectiveness of the model 
application for the prediction, simulation and modelling of the steel 
properties and also the design of chemical composition, heat and 
plastic treatment and geometrical of newly designed steels. 

The model calculation correctness has been fully verified by 
experiment. Materials researches performed in the virtual 
environment, both, in range of determining the mechanical 
properties and in the field of chemical composition and treatment 
conditions design, are consistent with the results obtained during the 
real research in real laboratory. Consistency was observed in the 
whole range of steel descriptor variation: of concentrations of 
chemical elements, heat and mechanical treatment conditions and 
mechanical properties of examined structural steels. Developed 
virtual environment enables the modelling of new, non-standard 
types of steel. Through the determination of relations between 
selected mechanical properties and the steel descriptors at specified 
range, it is possible to obtain data on the hypothetical and the newly 
designed materials, which have not been produced yet and existing 
only in virtual environment. Possibility of designing new materials 
with unique properties strictly adjusted to actual customer needs is 
crucial in achieving of the market success. The presented examples 
of computer aid in structural steel production showing a potential 
application possibilities of this methodology to support the 
production of any group of engineering materials. 
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